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 [Abstract : In a homogeneous isotropic fluid the kinetic energy spectrum 

is supposed to follow the Kolmogorov law. This fact has been very clearly 

established both experimentally and numerically. More than sixty years ago it was 

predicted independently by Bolgiano and by Obukhov that for a stratified fluid  

(like our atmosphere which supports a temperature gradient), the kinetic energy 

spectrum should be different. The degree of stratification is determined by the 

Richardson number Ri  which is a ratio of the “stratification potential energy” to 

the kinetic energy. It would be “natural” to find the Bolgiano-Obukhov spectrum at 

a relatively high Richardson number. However, till now this spectrum has never 

been clearly seen.  

 In this article we introduce and discuss the energy spectrum for fully 

developed turbulence and try to provide the reason behind the inability to capture 
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the Bolgiano-Obukhov spectrum. We use an analysis based on an almost forgotten 

Heisenberg- Chandrasekhar picture of turbulence to establish the crossover 

function for Kolmogorov to Bolgiano-Obukhov scaling in fully developed 

turbulence in a stably stratified fluid. We find that there are actually two 

crossovers-one from the Kolmogorov to the Bolgiano-Obukhov form and the other 

from the Bolgiano-Obukhov to a pre-dissipative form. For a given Richardson 

number, the former happens at a wave-number proportional to 
3/4Ri  and the 

latter at a wave-number proportional to 
3/16Ri . This severely restricts the range 

over which a pure Bolgiano-Obukhov scaling can be seen and explains the elusive 

nature of that scaling law].   

1. Introduction to Turbulent Flows 

One of the striking results in the theory of fully developed 

turbulence in a homogeneous fluid is the scaling law for the energy 

spectrum ( )E k  at a given wave-number k  in the inertial range. The 

energy spectrum is related to the total kinetic energy K  as 

 π



     
3

2 3

3

0

1 1
( ) ( ) ( )

2 2 2
j j

d k
K u d r u k u k E k dk

V
   … (1.1) 

In the above ( , )ju r t is the random turbulent velocity field, ( )ju k

its Fourier transform, the angular bracket denotes an appropriate 

ensemble average and V is the total volume of the fluid. The inertial 

range is the range of spatial scales where the wave-number k ( inverse of 

the spatial scale ) is smaller than wave-numbers in the dissipation range 

(where viscous forces dominate ) and larger than those corresponding to 

the large length scales where energy is injected in the fluid to maintain a 

non-equilibrium steady state. The scales are easily visualized from the 

stirring of a cup of tea to mix the sugar. We stir the liquid at a scale 
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which is characterized by the radius of the cup ( a few centimetres ). This 

energy is dissipated by the viscosity of the liquid which operates at a 

sub-micron scale. The ratio of the scales is about five orders of 

magnitude. This is where Kolmogorov1  argued that the energy spectrum 

has the universal form 5/3( )E k k . 

To get a feel for the logic behind the Kolmogorov result , we 

write down the primary equation for three dimensional incompressible 

fluid flow with velocity ( 1,2,3)iu i   [ incompressibility implies 0i iu   

( divergence free flow )] 

2
i j j i i i iu u u p u f                                            …  (1.2) 

In the above equation, the pressure is denoted by „p‟ (it is actually 

the pressure per unit density i.e. the constant density of the 

incompressible fluid has been absorbed in the pressure), f  is an external 

force and   is the kinematic viscosity. To find the rate of change of the 

total kinetic energy of the fluid, we need to consider the quantity 

3
j j

d ru u  and use Eq.(1.2) to substitute for ju .  

We will get four terms. The equality ( )j j j jdVu p dV u p     

holds since the velocity field is divergence free and  using Gauss‟s law 

this integral becomes the surface integral of the vector pu  with the 

surface as far away as we want. In particular the surface can be chosen 

where the fluid velocity vanishes ( there is no source ) and hence the 

integral is zero. Similarly for the term ( )i j j iu u u , we can write it as 

2( / 2)j ju u  and the logic of the previous sentence makes the integral 
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of this term zero as well. The integral 
2

j ju u dV can be written as the 

integral of the negative of  
2

j iu  and is the energy loss due to the 

viscous action. On the other hand, ( )j jdV u f  is the rate of energy 

supply by the external force [ the stirring action for the example of the 

coffee cup] . If these two effects are equal in magnitude then the total 

kinetic energy of the fluid is maintained and we have a non-equilibrium 

steady state of maintained turbulence. The supply of energy is at large 

length scales  and the dissipation is at the smallest scales. The energy 

which is introduced at a constant rate   is pictured to cascade down the 

scales without loss to be dissipated by viscous action at smallest scales.  

Kolmogorov argued that if one is not too close to the dissipation 

scale and also significantly away from the energy input scale, then the 

energy spectrum ( )E k of turbulence is determined by only the wave-

number „k‟ and the strength   of the cascading energy. The dimension of 

( )E k  is 
3 2/L T  and that of    is 

2 3/L T . Since ( )E k  is determined by 

  and k , we write ( ) m nE k C k ( the self-similar nature of the 

turbulent flow made famous by the Leonardo da Vinci drawing ), where 

C is a dimension-free universal constant and the exponents need to be 

found by a dimensional analysis. We see that 
3 2 2 3/ /m n mL T L T , 

leading to 2 / 3m   and 5 / 3n   . Hence
2/3 5/3( )E k C k  , the so-

called Kolmogorov spectrum. This is one of the best known results in all 

of turbulence and generally known as Kolmogorov‟s 5/3 law. 

 We now shift our attention to the stably stratified fluid where the 

density decreases with height. The stratified fluid was first studied by 
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Bolgiano2 and Obukhov3, who argued that one is supposed to encounter 

an energy spectrum ( )E k  which scales as 
11/5k

 in this case. We will 

work with a positive temperature gradient in the z-direction which makes 

the stratification stable. The constant positive temperature gradient is 

/T d  with the bounding surfaces as the x-y planes located at 0z   and 

z d . The steady state temperature profile is linear in z . We work in the 

Boussinesque  approximation4 where the buoyancy induced temperature 

fluctuation around the steady state shows up only in the linear order in 

the velocity dynamics. We denote the dimensionless temperature 

fluctuation by /T Tθ δ  . We also include a random forcing term 

( , )f r t in the velocity dynamics to inject energy at large length scales. 

With the buoyancy force included, the velocity dynamics (Navier-Stokes 

equation) becomes 

  α θ ν
ρ


         2

0

ˆi
t i j j i i i

p
u u u Tg z u f      …   (1.2) 

The pressure field is denoted by ( , )p r t , 0  is a mean density (will 

be absorbed in the pressure subsequently) , is the expansion coefficient 

and   the kinematic viscosity. The dynamics of θ for stable stratification 

(including an external random fluctuation ( , )h r t  at large length scales ) 

is 

θ θ λ θ      2 ( , )z
t j j

u
u h r t

d
                                 … (1.3) 

The dynamics of the total kinetic energy K follows from Eq. (1.2) as  

 
23 3 3

t z i j j jV K Tg u d r u d r f u d rα θ ν          … (1.4) 



90                           JAYANTA K BHATTACHARJEE 

The first term on the right hand side ensures that K is not 

conserved in the unforced, inviscid limit. In a similar vein, from Eq. (1.3) 

we have 

 θ θ λ θ θ       
22 3 3 3 31 1 1 1

[ ]
2

t zd r u d r d r hd r
V V d

  … (1.5) 

Between Eqns. (1.4) and (1.5), we have a conserved quantity E in 

the unforced and dissipation regime which is like a sum of kinetic and 

potential energies5, since 

   

α θ

ν λα θ θ

    

       



  

2 3

2 23 3 3

1 1
( )

2

1
[ ( ) ]

t t

i j j j

E K Tgd d r
V

u d r Tgd d r f u h d r
V    …(1.6)

 

The first two terms on the right hand side cause dissipation at 

very short length scales and the third and fourth terms inject energy at 

large length scales. In the unforced and inviscid limit (ν=λ=f=h=0) the 

quantity ( )E K Tgd Uα    where 
2 31

2
U d r

V
θ   is conserved 

and from the structure of Eq (1.6), this quantity E is produced at large 

length scales (small wave-number scales) and flows down to short length 

scales (large wave-numbers) where it is dissipated. To compare K and U 

on the same footing it is best to make them have the same dimension and 

this is done by defining 
2
0U u U  where 

2
0u  is a mean square velocity. 

The conserved quantity in the inviscid, unforced limit is now 

2
0

Tgd
K U K RiU

u

α
   where the dimensionless number 
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2
0

Tgd
Ri

u

α
  is called the Richardson number. For the stably stratified 

fluid, this is the energy that is conserved in the absence of dissipation 

and external forcing. However, the energy spectrum of turbulence that 

one talks about is always the kinetic energy spectrum. For the energy 

flux, however, it is the total energy and that can lead to a very different 

story for the scaling laws6,7. It should be noted that for the convective 

situation ( top-heavy) dealt with in Refs8-16, the terms which are 

quadratic in the  -field in Eq.(1.6) appear with a negative sign. This 

makes definite statements about the sign of the energy flux difficult as 

the flux may depend on the value of the Prandtl number. A detailed 

discussion can be found in Verma et al17. 

When the Richardson number becomes high, the U  term can 

dominate the “energy” transfer and the energy spectrum will be changed 

because the transfer will now be engineered by the θ² term. The rate of 

transfer εθ will have the dimension of θ²/t where t is time. Once again, it 

is important to appreciate what happens at large Richardson numbers. 

The scale to scale transfer of the energy E is now dominated by the 

dynamics of the temperature fluctuation θ(r,t). Apparently θ is 

“dimensionless” but this is not the dimension one is talking about. The 

dimension is the scaling dimension and corresponds to the dimension 

that one gets if Eq. (1.3) is going to be invariant under a scale 

transformation. This implies that the constant rate εθ  at which the energy 

is transferred in the inertial range will have the dimension L2/T5. The 

energy spectrum E(k) in this limit will be determined by εθ and k and is 

easily seen to be     
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2/5 11/5
1( )E k K kθε

                                                          … (1.7) 

where K1 is a numerical constant. The above spectrum is known 

as the Bolgiano-Obukhov scaling law23. Unlike the Kolmogorov 

spectrum, this spectrum has hardly ever been observed. Two important 

exceptions are the investigations of Kumar et al6 and Rosenberg et al7. 

Even in these two studies, the 11/5 spectrum is seen over only one 

decade at the most. 

The scaling that we describe in Eq. (1.7) is isotropic while the 

situation that we have described is quite clearly anisotropic. Many of the 

references18-23  do observe an anisotropic spectrum. This is why this issue 

was studied from a scaling perspective in Refs24-25 and it was found that 

the isotropic Bolgiano-Obukhov  spectrum would be a reasonable 

approximation when the Richardson number is of O(1) and the vertical 

length scale is of 
3
0( / )O u ε which is in agreement with the finding of 

Rosenberg et al7. In this moderately anisotropic situation, Eq.(1.7) has to 

be understood as an angle averaged result26.  

In a recent work27, we suggested, based on a preliminary 

examination of the local energy transfer associated with Eq.(1.6), that the 

Bolgiano –Obukhov scaling should be seen at wave-numbers higher than 

those at which the Kolmogorov scaling is seen. This is anti-„common-

sensical‟ since for large k , we will have 
5/3 11/5k k   and hence 

Kolmogorov spectrum should dominate. However, the „common-

sensical‟ result has never been seen. In fact, an examination of the data 

presented by Rosenberg et al7 was actually seen to be consistent with the 

violation of naive reasoning. In fact, for convective turbulence a similar 

qualitative behaviour in co-ordinate space was seen by Kunnen et al15. 
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Our  next goal is to discuss the intricacies associated with  the scaling of 

the energy spectrum E(k) for the stably stratified fluid. The major issues 

(which have prevented a clear cut observation of the Bolgiano-Obukhov 

spectrum) are: 

(A) The crossover from Kolmogorov spectrum to Bolgiano-Obukhov 

spectrum is determined by the combination 3/4kRi  with the 

Kolmogorov region corresponding to 3/4kRi <<1 and the Bolgiano-

Obukhov region corresponding to 3/4 1kRi  . This means that even 

if one is at a reasonably high Richardson number, one could be 

seeing a Kolmogorov spectrum if the condition 3/4 1kRi   is not 

satisfied. What is very likely, even if it is , one will be caught in a 

crossover region where the exponent will seem to lie between 1.67 

and 2.2. The crossover region is consequently vital and  we will 

obtain an exact differential equation describing the course of it. 

(B) The problem gets further complicated by the fact that the Bolgiano-

Obukhov spectrum crosses over to an intermediate scaling in the 

pre-dissipative regime. This crossover happens if 3/16 1kRi   and 

hence if the Richardson number is not ideally chosen, a clear run of 

the exponent 2.2 would hardly be seen. We will provide an exact 

form for this crossover as well. Between these two crossovers , it 

becomes non-trivial to see a pure Bolgiano-Obukhov spectrum and 

this could be the reason that , unlike the Kolmogorov spectrum, 

there are very few instances of finding a pure Bolgiano-Obukhov 

spectrum. 

In Sec II, we extend the previous works of Chandrasekhar28 and 

Heisenberg29,30 to study the crossover from the Kolmogorov to a 
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dissipative regime. We show how the Heisenberg formulation works for 

the moderately high Richardson number case (energy transfer by the 

thermal fluctuations only) and obtain a closed-form expression for the 

spectrum describing the transition from a Bolgiani-Obukhov form to a 

pre-dissipative form. In Sec III we generalize this approach to obtain a 

gradual crossover from the Kolmogorov spectrum to the Bolgiano-

Obukhov one. We conclude with a brief summary in Sec IV. 

2  Bolgiano-Obukhov to dissipation range crossover 

In this section we extend the Heisenberg –Chandrasekhar[28-30] 

formulation to the large Richardson number situation where the energy 

dynamics of Eq. (1.7) contains a significant contribution from thermal 

fluctuations and the dynamics is primarily the dynamics of the θ-field as 

given by Eq.(1.3). In Fourier space the θ-dynamics is given by 

 

3
2 3

3
( ) ( ) ( ) ( )

2
j j

d q u
p i V p u p q q p p

d
θ θ λ θ

π
              … (2.1)                       

The total energy E must include the “potential energy” term in 

Eq. (1.12) and in Fourier space is written as  

 

3
2 *
0 3

( ) ( )
2 2

d p
E K u Ri p pθ θ

π
                                          … (2.2)                                           

Dropping all constant pre-factors, we write this as 

3 ( )E K Ri d pF p   , where 
*( ) ( ) ( )F p p pθ θ  and is the 

amount of “potential” energy at the scale p. It should be noted that the 

last term on the right hand side of Eq.(2.1) is like the first term with the 

momentum 1 1p d   and hence has been ignored. In the large 

Richardson number situation it is the time derivative of E at a given scale 
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which is dominated by ( )F p . The energy spectrum that one talks about 

is, however, always the kinetic energy spectrum unless specifically 

mentioned otherwise. 

The dynamics of the potential energy is the primary contributor to 

the energy flux at moderate Richardson numbers. The dynamics of F(p) 

is (cancelling the ubiquitous Ri  in this limit) 

 

θ

θ θ λ
π

λ

   

 


3

2

3

2

( ) Im * ( ) ( ) ( ) 2 ( )
2

( ) 2 ( )

j j

d q
F p V p p u p q q p F p

T p p F p

… (2.3) 

In the above the first term is the transfer due to the interacting 

triad,      – . Once again the total energy ( )E k contained between the 

scales p=0 and p=k is obtained as 
2

0

4 ( )

k

p F p dpπ  and the time 

derivative of ( )E k  is the rate at which energy is leaving the region p<k 

for the region p>k and hence is the rate of energy transfer from wave-

numbers below k to those above it. Hence the transfer rate, dominated by 

the second term in Eq.(2.2), is found as ( the constant velocity scale 2
0u is 

absorbed in Ri ) 

θ θε π λ π  
2 4

0 0

( ) [ 4 ( ) 4 ( ) ]

k k

k Ri T p p dp p F p dp             … (2.4) 

We first take the dissipative term in the above equation and 

express it in terms of the energy spectrum E(p) and p. The dimension of 

F(p) is found from the dimension of θ(p). As explained before the 

dimension that we are talking about is the scaling dimension (how do 



96                           JAYANTA K BHATTACHARJEE 

equations remain invariant under a scale transformation) and hence the 

scaling dimension of θ(r) is L/T2 . Consequently, F(p) has a scaling 

dimension of L5/T4. As a result in the second term on the right hand side 

of Eq. (2.4), the quantity p4F(p) has the dimension L/T4. Expressed in 

terms of p and E(p) it behaves as E2(p)p5. The second term on the right 

hand side of Eq. (2.4) now becomes (dropping numerical factors)

2 5

0

( )

k

E p p dp . Our task now is to cast the first term in a similar form i.e. 

we want to write it as 
2 5

0

2 ( )

k

eff E p p dpλ  . Once again as in the kinetic 

energy case, the λeff operates at all scales that are greater than k and is 

better written as ( )eff

k

p dpλ



 .  As in the Kolmogorov case[28] expressing 

λeff(p) ( this is done simply by a dimensional analysis ) in terms of E(p) 

and p, we get  (the sign has been made positive with the understanding 

that the flow is from low to high values of k) 

θε λ

 
  

  
 

2 5

0

( )
( ) ( )

k

k

E p dp
k Ri E p p dp

p p
                   … (2.5) 

With ( )k  set equal to a constant ε we obtain the crossover from 

the inertial range scaling to a pre-dissipative scaling for Bolgiano-

Obukhov turbulence.  

 Taking a derivative of Eq. (2.5) with respect to k when ( )k  is a 

constant, gives 



         THE KINETIC ENERGY SPECTRUM FOR ETC.                   97 

 

2 5 2 5

3/2 3

0

( ) ( )
( ) ( )

k

k

E p E k
dp E k k E p p dp

p k
λ

 
  

  
        … (2.6) 

Defining
2 5

0

( ) ( )

k

y k E p p dp  , we can write Eq. (2.6) as  

3/2 2 3 3/2

( ) 1
( )

( ( ))
k

E p
dp y k

p k k E k
λ



                             … (2.7) 

Further, defining 
3/2( )E p p  as 

1/4g , the above equation 

becomes 

1/4

3 2 3/4

( ) ( )
0

( )
k

g p y k
dp

p k g k
λ



                                      … (2.8) 

The definition of ( )y k  shows 
5 2 ( )

( )
dy g k

k E k
dk k

   and using 

this in Eq. (2.8) to change the variable p to y, we arrive at                    

2 3/4 2 3/4

( )

1 ( )
0

y k

dy y k

k g k g
λ



                                            … (2.9) 

Differentiating the above equation with respect to y yields (note that 

2 2( ) 2

( )

d k k

dy g k


3/4 7/4 3/4

1 2
0

y d y

dyg g g

 
    

 
                      … (2.10) 

leading to the differential equation 
8 8

3 3

dg g

dy y
    with the solution 

8/38
( )

5

y
g y Ay  where A  is a constant. The relation 

dy g

dk k
  

allows us to write   
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  ln const.
( )

dy
k

g y
                                                     … (2.11) 

Integrating we find 

β

α




8/5

8/3 3/5(1 )

k
y

k
                                                           … (2.12) 

where α and   are constants. We use the definition of y(k) to 

write 

 
β

α

 



3/5
2 5

8/5
8/3

8
( )

5 1

dy k
E k k

dk k

                              … (2.13)  

In the low k inertial range, the k term in the denominator is 

unimportant and we get  

11/5( )E k k                                                                       (2.14) 

-the desired Bolgiano spectrum. For high values of k the crossover 

is to a 
13/3( )E k k form, which is less steep than the Kolmogorov to 

viscous crossover. 

We now need to discuss the Richardson number dependence of 

the coefficients   and   in Eq.( 2.13 ) above. For this, we need to go 

back to Eq.(1.7) and note that 2/5( )E k   and using Eq. (2.4), we get 

2/5( )E k Ri . Using Eq.(2.13) in the inertial range we get 4/5Ri  . In 

the high k range, dissipation plays a more important role and hence the 

spectrum there will be determined by the dissipation coefficient   and 

not Ri . In the high wave-number range the spectrum will be independent 

of Ri  if Ri  . This implies that the spectrum will be proportional to 
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13/3k  for wave-numbers 3/16k Ri . This is our first result, and it states 

that to see the Bolgiano- Obukhov spectrum, we need to focus on wave-

numbers which satisfy 3/16 1kRi  . We define a crossover wave-number

3/16
Ck Ri  . For  Ck k  , one has the Bolgiano –Obukhov spectrum and 

for Ck k  , one enters the dissipation range with a 13/3k  spectrum. Since 

the coefficient   in Eq.(2.13) is proportional to Ri , we can write 

Eq.(2.13) as 

11/5

4/5
8/3

( / )
( )

1

C

C

k k
E k E

k

k




  
   
   

                                                  … (2.15) 

The above formula clearly shows the transition from the Bolgano-

Obukhov spectrum to a dissipation influenced spectrum as the wave-

number increases past the crossover wave-number Ck . In the next 

section, we present the Kolmogorov to Bolgiano-Obukhov spectrum 

which will yield another constraint on the range where one can see the 

stratified fluid spectrum. It should be clear that our calculation does not 

fix the coefficient of the Ri  involving terms. So the exact range where 

the desired spectrum will be seen is not being set down but a clear idea 

of where to look for it and the high probability of being in a crossover 

range forever are the two points that we want to bring out.      

 

3.  The Kolmogorov to Bolgiano-Obukhov crossover 

In this section we use the technique developed above to obtain the 

crossover from the Kolmogorov to the Bolgiano-Obukhov spectrum. A 

preliminary version of this can be found in Ref [27]. We begin by noting 
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that the time derivative of the E(k) obtained from the full energy 

expression in the first line of Eq. (1.5) gives an energy flux which is 

simply the sum of the kinetic energy flux and the “potential energy” flux 

of the previous section with the latter weighted by the appropriate factor 

of Tgdα . In this section we will focus on the inertial range crossover 

only and hence drop the dissipative terms. The total energy flux ( )T k  

across the wave-number k is given by the appropriate combination of 

( )C p  and ( )F p where ( ) ( ) ( )C p u p u p   is the velocity 

correlation function. In analogy with the previous section the rate of total 

energy transfer from wave-numbers below „k‟ to wave-numbers above 

„k‟ is 

ε π    
2

0

( ) 4 ( ) ( )

k

T k p C p RiF p                                  … (3.1) 

Since we are in the inertial range the dissipative terms will be 

dropped and we have the energy transfer rate given by 

ε

  
  

  
  

2 5 2

0 0

( )
( ) ( ) ( )

k k

T

k

dp E p
k p E p dp Ri p E p dp

p p
         … (3.2) 

The first term on the right hand side of the above equation is 

exactly the term used by Heisenberg [31]. We need to point out that 

being in the inertial range puts a limit on the wave number. The smallest 

allowed wave number is determined by the inverse of the  system size. 

The largest requires that ( ) /E k k be significantly larger than   or  , 

whichever is larger. This requires 1/3 4/3 ,k     as well as 

1/5 8/5 ,Ri k    . It should be pointed out that we have absorbed a 
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constant dimensional factor of square of a typical velocity scale in the 

problem in the Richardson number written above. We define  

2 5

0 0

( ) ( ) ( )

k k

y k p E p dp Ri p E p dp                               … (3.3) 

3 6 2( ) ( ) ( )g k k E k Rik E k                                          …  (3.4) 

( )dy g k

dk k
                                                                        … (3.5) 

Invoking the Kolmogorov picture of the inertial range where

( )T k   is a constant and taking a derivative of Eq. (3.2) with respect to k, 

we obtain (it should be noted that since the arguments leading to Eq. 

(3.2) from Eq.(3.1) are based on dimensional analysis, there can be 

unknown functions of the dimensionless variable Ri  associated with the 

second term in Eq. (3.4) which can only be fixed by some additional 

constraint ) 

3

( ) ( )
( )

k

E k dy E p dp
y k

dk p pk



                                         … (3.6) 

Using Eq.(3.3) to express dy/dk, we get 

 

3 2 5 2

2 1/2 3
3

( ) ( ) ( )

( ) ( )

( ) 1 1

1 ( )( )

k

E p dp E k y k

p p k k E k Rik E k

y k

k Rik E kk E k










            … (3.7) 

Solving the quadratic equation for k3E(k) in Eq. (3.4), one has 
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 
3

1/2

2 ( )
( )

1 4 ( ) 1

g k
E k k

Rig k


 
                                      … (3.8) 

Substituting this result in Eq. (3.7) allows us to write the left hand 

side of the equation as 

                                                                                              

 

 

 

          … (3.9) 

We have used Eq. (3.5) to obtain the final form above.  

Using Eq.(3.8) in the right hand side of Eq.(3.7) and noting that  

1/2

3 23

1 1 ( ) 2

1 ( ) ( ) 1 1 4 ( )( )

y k

Rik E k k g k Rig kk E k

 
  

   
 … (3.10) 

We finally write Eq.(3.7) in the form  

 
1/2 1/2

2 2
( )

( )
1 4 ( ) 1 1 4 ( ) 1

( ) ( )y k

dy y k
Rig p Rig k

g p p k g k



             … (3.14) 

Differentiating both sides of Eq (3.11) with respect to y, we have 

 
 

 
  

   
  
 
 
 

1/2

1/2

2

1/2

1 4 1 2 ( )
1 4 1

( )

1 4 1

gRi y k
Rig

g k g

y Rigd

dy g

                     … (3.12) 

 

 

1/2

3 3

2
( )

1 4 ( ) 1( )

2

2

( ) 1 1 4 ( )

k k

y k

Rig pE p dp
dp

Rip p

dy

p g p Rig p

 



  
   

  

 
  

   
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Defining, 

 
1/2

1 4 ( ) 1
( )

( )

Rig k
f y

g k

 
                                        … (3.13) 

leads to  

2 ( )
( )

( )

y k f d
f yf

g k dy
                                                    … (3.14) 

Consequently, 

2(ln ) 2
dy

d fy
g

                                                               … (3.15) 

with the integral  
y

f C
k
  ( constant) leading to  

1/4

1 4 ( ) 1

( )

Rig k y
C

kg k

  
                                           … (3.16) 

From Eq (3.5), we now have the g(k) given by (setting 

1/42C Ri ) 

   
 

1/4
1/4

0

( )
( ) 1 4 ( ) 1

k
g p

dp kg k Rig k
p

                … (3.17) 

A derivative takes us to the exact differential equation satisfied by 

g(k). We find 

      
    

 
 

 

3/4
7/4

2

1 1 4 ( ) 1 1 4 ( )4 ( ) 4 ( )

1 6 ( ) 1 6 ( )
1 1

1 4 ( ) 1 4 ( )

Rig k Rig kdg g k g k

Rig k Rig kdk kk

Rig k Rig k

                                    

                                                                                                      … (3.18)                                                                                                                                                                 
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To obtain the asymptotic answers, we need to study the limits 

Ri0 (Kolmogorov) and Ri∞ (Bolgiano-Obukhov). In the first case 

we obtain  

7/4

2

4 4dg g g

dk k k
                                                            …  (3.19) 

Simply by inspection we can write down the solution as 

4/3( )g k k . From Eq.(3.4) we now get 
5/3( )E k k  which is the 

Kolmogorov spectrum. For Rig(k)>>1 on the other hand  

 
  

 

13/8

2 1/8

8 2 2 ( )

3

dg g g k

dk k k Ri
                                          … (3.20) 

In this limit inspection yields
8/5( )g k k  and this in conjunction 

with Eq.(3.4) in the ( ) 1Rig k  limit gives 
11/5( )E k k  which is the 

Bolgiano-Obukhov spectrum. It is thus clear that the exact solution for 

g(k) obtained by numerically integrating Eq.(3.18) starting at some small 

value of k with an initially prescribed g(k) will evolve differently for 

different values of the Richardson number and in the extreme cases 

Ri0 and Ri g(k)>>1 yield the two limiting spectra. The departure from 

the Kolmogorov region occurs if ( ) 1Rig k   with 4/3( )g k k  leading to 

the constraint 
4/3 1Rik   which implies that it occurs at wave-numbers 

3/4k Ri . We define a wave-number Bk  by the relation 3/4
Bk Ri  and 

another wave number Ck  by the relation 3/16
Ck Ri . The combined 

conclusion of Secs 2 and 3 is that a clear Bolgiano-Obukhov spectrum 

can only be seen in the span B Ck k k  .  
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4. Discussion of the crossovers 

In this section, we use the essential features of the crossover 

issues in Sections 2 and 3 to write down a handy crossover formula 

which can be used to analyze experimental and numerical data. To this 

end, we rewrite Eq.(2.23) as 

 
11/5

0
4/5

8/3
( )

1
C

E k
E k

k

k




  
   
   

                                              … (4.1) 

where the constant 0E  is dependent on the Richardson number. 

This provides the crossover from the Bolgiano-Obukhov spectrum to an 

early dissipative range spectrum. To simplify the Kolmogorov to 

Bolgiano-Obukhov crossover, we return to Eq (3.18) and simplify it by 

modifying a couple of inessential details. We carry out approximations in 

the functional forms involving the square roots to cast everything as a 

function of the square root 1 ( )Rig k  alone which leaves the two 

limiting forms ( 1, 1Ri Ri   ) unchanged. What this amounts to is that 

we take Eq.(3.18) and replace the number „6‟ appearing in two places by 

the number „4‟.This leads us to a much simplified crossover differential 

equation 

 
 



7/4 7/4

2 1/8

4 2

1 ( )

dg g g

dk k k Rig k
                                    … (4.2) 

It is slightly more convenient to work in terms of 

3/4( ) ( )h k g k  and 
1l k ,which casts Eq.(4.2) in the form 
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α
 

 4/3 1/8

3

(1 / )

dh h

dl l Ri h
                                           … (4.3)      

where 7/42  . The above form is easily amenable to perturbation 

theory for small Richardson numbers and to the lowest non-trivial order  

α α

α

 
   

 

4/3
2

1/3

3 4
( ) ( )

4 64

l Ri
h l O Ri

l
                             … (4.4) 

It is easy to check that for high Richardson numbers the 

asymptotic form of h(l) is  

β 6/5( )h l l                                                                        … (4.5) 

where   is a function of the Richardson number which vanishes 

for Ri  . An approximate formula which follows the above 

constraints is  

 

3/20

4/3

1
( )

4
1

l
h l

Ri

l


 
 

  
 
 

                                                 … (4.6) 

Remembering l=1/k , g(k)=h(k)–4/3 and 3/4
Bk Ri  we get 

                     

1/54/3 4/3

4/3
( ) 1

B B

k k
g k

k k

  
   
   

                             … (4.7) 

Now turning to Eq. (3.8) and using the same approximations as 

explained below Eq. (4.1) , we arrive at the simplest possible crossover 

as 

 

3

0

0

( )
( )

1 ( )B

k g k
E k K

k B Rig k


 

  
 

                                        … (4.8) 
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In the above equation 0K and 0B  are numerical constants of order 

unity which should be material independent and hence the above 

crossover has a universal character. For 1Ri   Eq. (4.8) yields 

3( ) ( )E k g k k  and further 
4/3( )g k k  since in this limit / 1Bk k 

.The Kolmogorov energy spectrum is obtained for very small Richardson 

numbers. For Rik4/3>>1, i.e. Bk k  we crossover to the Bolgiano 

spectrum. If we want a single formula to represent the crossover to the 

spectrum for Ck k , we can combine Eqs (4.8) and (2.25) to write 

3

0 4/5
8/3

( ) 1
( )

1 ( )

1
B

B

k g k
E k K

k Rig k
k

k



 

  
     

   
   

                 … (4.9) 

The number  in the above formula is the ratio
8/3( / )B Ck k   

and is expected to be orders of magnitude smaller than unity. The 

constant 0B has been set equal to unity which is consistent with the order 

of accuracy in the approximations in this section. The compensated 

functions shown in Fig 1 are obtained from Eq.(4.1) with the overall 

scale-factor set to unity.                                     

The crossovers are now clearly seen. At any given Richardson 

number Ri, for small wave-numbers satisfying Rik4/3<<1( Bk k ), one 

gets
5/3( )E k k . As the wave-number increases, it begins to crossover 

to 
11/5( )E k k  and for Bk k , it is predominantly of the Bolgiano-

Obukhov variety. If the wave-number is increased further to Ck k , the 

crossover to a faster decay is obtained as shown in Eq. (2.25) with
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13/3( )E k k  before one enters a completely dissipation dominated 

regime. A function covering the entire range can be written down as 

 

1/5
8/15 4/3 4/5

11/5

1/2 8/3
4/3 4/3

1 1
( )

11 1

x x
E k k

xRix x 

      
   

 

    …(4.10) 

For very small Richardson numbers, there is hardly any flat 

region in the compensated spectrum. It is for Richardson number of 

order unity that about a decade of flat compensated spectrum is obtained. 

For higher Richardson number , the anisotropy is expected to play a 

major role. For 1Ri  , our formula   yields answers  very similar to 

those seen in Fig (   ) of Ref.(6) and Fig (4b) of Ref.(7).  Here it is clearly 

seen that the spectrum crosses over from Kolmogorov to Bolgiano-

Obukhov as the wave-number increases and then departs again both in 

the calculation here and the simulations.  

For completeness, we provide the crossover results in co-ordinate 

space as well. In co-ordinate space one studies the correlation function 

2
2( ) [ ( ) ( )]S r   u x r u x . The relation between 2 ( )S r and ( )E k is 

obtained as  

2

0

sin
( ) 4 ( ) 1

kr
S r E k dk

kr


 

  
 

                                    … (3.26) 

The energy spectrum E(k) is obtained from Eqs. (3.25) and (3.8) 

and S2(r) from Eq.(3.26). The crossover features are as follows. For large 

values of r corresponding to r>>Ri3/4, the spectrum is Kolmogorov i.e 

2/3
2( )S r r , for r<<Ri3/4 (more precisely Ri5/8), the spectrum is 
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Bolgiano-Obukhov i.e. 
6/5

2( )S r r  and for still smaller r (but still not 

in the dissipative range) it is 
10/3

2( )S r r as established by Eq (2.23). 

This implies that if one observes a Bolgiano-Obukhov spectrum at a 

certain spatial scale at a low Richardson number, it is possible that one 

will observe a Kolmogorov spectrum at that same spatial scale at a high 

Richardson number. 

5.  Conclusion 

We have reviewed the turbulence energy spectrum in stratified 

fluids and looked at the issue of crossover from Kolmogorov to 

Bolgiano-Obukhov scaling and beyond in the energy spectrum of a 

stably stratified fluid (when the results are always true) and in a 

convecting fluid (when our results hold only if the Bolgiano Obukhov  

spectrum is numerically or experimentally observed). The key 

observation is that what determines the crossover from one regime to 

another is the product knRi where n is a number of order unity. For values 

of knRi greater than order unity, it is the Bolgiano-Obukhov spectrum 

which is relevant and for lower than unity values the observed spectra 

should be Kolmogorov like. The value of n is 4/3 in the extreme 

Kolmogorov limit and increases to 8/5 for larger Richardson numbers. At 

values of k significantly higher than that required for onset of the 

Bolgiano spectrum, the energy spectrum crosses over to a k–13/3 form. In 

co-ordinate space the second order structure factor which is the Fourier 

transform of the energy spectrum scales as r2/3 at large distance scales 

(Kolmogorov) and crosses over to a Bolgiano-Obukhov spectrum (r6/5) at 

shorter scales and a r10/3 form at even shorter scales bordering on the 
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dissipative regime. This is seen in Fig (6) of Ref [15] but not mentioned 

in the article. 
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