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A note on stimulus gravitational wave detection 

Farrin Payandeh 
Department of Physics, Payame Noor University (PNU),  

P.O. BOX, 19395-3697 Tehran, Iran 
E-mail : payandehfarrin92@gmail.com 

(Received for publication in March, 2016) 
[Abstract : In this paper, we show that by calculating appropriate cross-sectional 

coefficients for the waves, one can obtain applicable mathematical tools of projecting and 
integrating in the transverse areas. In this way, the mathematical configuration of what we 
have in mind for detecting the gravitational waves, will form. These mathematical tools, are 
used to construct a way of approach, to the gravitational waves detection methods]. 

Keywords: Gravitational wave, Stimulation, Detection, Observation 

1. Introduction 

One independent approach in modern physics of any symmetry 
considerations at all is the study of a gravitational wave. Just as one 
identifies as water waves small ripples rolling across the ocean, so one gives 
the name gravitational waves, to small ripples rolling across spacetime1-5. 
Spacetime is similar. Propagating through the universe, according to 
Einstein's theory, must be a complex pattern of small-scale ripples in the 
spacetime curvature. These ripples are produced by binary stars, by 
supernovae, by gravitational collapse, by explosions in galactic nuclei. 
Locally, one can ignore the interaction of these ripples with the large-scale 
curvature of spacetime and their nonlinear interaction with each other. One 
can pretend the waves propagate in flat spacetime; and one can write down a 
simple wave equation for them. But globally one cannot. The large-scale 
curvature due to quiescent stars and galaxies will produce redshifts and will 
deform wave fronts; and the energy carried by the waves themselves will 
help to produce the large-scale curvature. The gravitational waves of our 
universe as propagating through flat, empty spacetime (local viewpoint). 
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2 FARRIN PAYANDEH 

Then they can be analyzed using the linearized theory of gravity, which has 
an extant availability in texts on general relativity and its astrophysical 
consequences6-10. Linearized theory, one recalls, is a weak-field 
approximation to general relativity. The equations of linearized theory are 
written and solved as though spacetime were flat (special-relativity 
viewpoint); but the connection to experiment is made through the curved-
space formalism of general relativity.  

In the recent years, a huge attempt has been devoted to detect the 
gravitational waves, which finally led to their detection11 in 2016. A 
gravitational wave detector is even easier to analyze than the generator (for 
example, a binary system or a black-hole) when one deals with gravitational 
waves within the framework of general relativity. Potential detectors are 
usually installed in the solar system, where gravity is so weak and spacetime 
so nearly flat that a plane gravitational wave coming in, remains for all 
practical purposes a plane gravitational wave. Moreover, the nearest source 
of significant waves is so far away that, for all practical purposes, one can 
consider the waves as plane-fronted when they reach the Earth. 
Consequently, as they propagate in the Z-direction past a detector, they can 
be described to high accuracy by the transverse-traceless linearized 
expressions. Because of the increasing importance of constructing 
gravitational waves detectors, In this paper as well, we deal with the 
possible ways of building such detectors, in a mathematical viewpoint. The 
paper is organized as follows: In Sec. 2, we consider a resonant detector 
based on a definite pattern of an ideal detector. In Sec. 3, we assume that 
this detector obeys polarized wave equations in the vibrationE kT  limit. In 
Sec. 4, we take into account small displacements and solve the wave 
equations which results in the determinations of the massive approximation. 
We conclude in Sec. 5. 

2. The Idealized Resonant Detector 
We consider the proper reference frame of a vibrating-bar detector. In 

such detectors, the bar hangs by a wire from a cross beam, which is 
supported by vertical posts (see Fig. 1) that are embedded in the Earth. 
Consequently, the bar experiences a 4-acceleration given,  by g z= ∂ ∂ˆ( / )a , 
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where g  is the local acceleration of gravity. Later, the spatial axes will have 
rotated relative to the bar, so the components of a but not its magnitude will 
have changed. The proper reference frame relies on an imaginary clock and 
three imaginary gyroscopes located at the bar's center of mass. Coordinate 
time is equal to proper time as measured by the clock, and the directions of 
the spatial axes ˆ/ jx∂ ∂  are attached to the gyroscopes. The forces that 
prevent the gyroscopes from falling in the Earth's field must be applied at 
the centers of mass of the individual gyroscopes. 

 
Fig.1 

A schematic view of the vibrating bar detector. 

The metric perturbation 

( ), ( ),TT TT TT TT
xx yy xy yxh h A t z h Ah t z×+= − = − = = −  …  (1) 

results in the Riemann tensor perturbations 

 0 0 0 0 2
( ),1

x x y yR t xR A+= − = − −    

 0 0 0 0
1 ( ).
2x y y xR R A t z×= = − −  … (2) 

These together, give the following stress-energy tensor : 

( ) ( ) ( )
00 0 time average

2 21
16

GW GW GW
zz z AT T AT

π + ×= = − = +   …  (3) 
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To analyze most easily the response of the detector to these impinging 
waves, use not the TT coordinate system { }xα  (which is specially "tuned" to 
the waves), but rather use coordinates ˆ{ }xα , specially "tuned" to the 
experimenter and his detector. The detector might be a vibrating bar, or the 
vibrating Earth, or a loop of tubing filled with fluid. But whatever it is, it 
will have a center of mass. Attached the spatial origin, ˆ 0jx = , to this center 
of mass; and attach orthonormal spatial axes, ˆ/ jx∂ ∂ , to gyroscopes located 
at this spatial origin. If the detector is accelerating (i.e., not falling freely on 
a geodesic curve), make the gyroscopes accelerate with it by applying the 
necessary forces at their centers of mass. Use, as time coordinate, the proper 
time 0̂x τ=  measured by a clock at the spatial origin. Finally, extend these 
locally defined coordinates ˆxα  throughout all spacetime in the straightest 
manner possible.  

Now let the 4-velocity, i.e. the tangential vector to the trajectory curve, 
measured by an observer. Whose proper time is measured by the parameter 
τ , be denoted byuα . The whole system would therefore obey the evolution 
equations13-17. 

( )

2 2 2

2 2

1 ,
3

2 1
3 3

1 1 ,
2 3

u ud R
d
d

h
d

C h h R hu u h R

µ ν
µν

µν λ λ
µν µλ ν µλ ν µν

λ ρ λρ λρ
λνµρ µλ νρ µν λρ

σ ω
τ
σ

σ σ σ ω ω σ ω
τ

Θ + Θ + − = −

= − Θ − − + −

+ + −

   

[ ] ,2 2
3

d
d

µν λ
µν ν µ λ

ω
ω σ ω

τ
= − Θ −   … (4) 

in which, , µνσΘ  and µνω  are respectively the scalar expansion, the 
symmetric traceless shear tensor and the anti-symmetric rotation tensor. 
Moreover 2 2,µν µν

µν µνσ σ σ ω ω ω= =  and Cλνµρ  is the Weyl conformal 
tensor. Also hµν  is the projection tensor which for time-like curves is 
defined by  

.u uh gµν µν µ ν= +    … (5) 
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Generally speaking, the equations (4) deal with the kinematics of flows 
which are generated by vector fields. Such flows are indeed congruences of 
integral curves which may or may not be geodesics. Actually in the context 
of these equations, we are interested in the evolution of the kinematical 
characteristics of the so-called flows, not the origin of them. These 
characteristics which are contained in those equations, may constitute one 
equation18 like. 

( )

1 ,
3

1 ,
3

v h

v h

ν µ µν µν µν

µν ν µ µν

σ ω

σ

∇ = + + Θ

= ∇ − Θ
    

,vµ
µΘ = ∇    … (6) 

and the antisymmetric part is 

[ ].vµν ν µω = ∇    … (7) 

Geometrically, these quantities are related to a cross-sectional area 
which encloses a definite number of integral curves and is orthogonal to 
them. Moving along the flow lines, this area may isotropically changes its 
size or being sheared or twisted, however it still holds the same number of 
flow lines. There are some analogies with elastic deformations. Here we 
should note that the evolution equations may be essentially regarded as 
identities, which become equations when they are for example used in 
spacetimes defined by Einstein field equations. Moreover, thee equations 
are of first order and non-linear. Also the expansion equation, is the same as 
Riccati equation in mathematical regards19. The expansion is indeed the 
change of the cross-sectional area which is orthogonal to the geodesic (or 
non-geodesic) bundle. 

Now for a detector which is falling on an integral curve in a weak 
gravitational system, the above formulations, do hold also when the waves 
impose small perturbations on the system. Regarding this, one can deal with 
the energy of the system, which the detector would feel. By using the 
advantage of the Hamilton-Jacobi equations, we have  

 2( ) 0,g p p mcµ ν
µν + =    … (8) 
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in which according to a parameterized trajectory bundle and in terms of the 
coordinates, pµ is usually defined as19 

.dxp x
d

u
µ

µ µ µ

τ
= = ≡    … (9) 

For a typical spherical metric  
2 0 2 2 2 2

00 ( ) ,rrds g dx g dr r d= + + Ω   …  (10) 

where 0x ct= . For a conformal spherically symmetric metric, with 
00 ( )g B r= −  and 1( )rrg B r −=  where ( )B r  is definitely dimensionless. One 

can write 

0 .
( )
ax

B r
=    … (11) 

For pure radial geodesics curves, this gives  

 ( ) ( )2 20 1 2( ) ( ) 0,B r x B r r mc−− + + =    … (12) 

Substitution of (11) and rearrangements result in 
2 2

2 2

1 1 1 0.
( ) ( )

a r
B r mc B r mc

− + + =
   … (13) 

Since each part of (15) has to be dimensionless, therefore we require that 
2 2Dim [ ] .a mc=    … (14) 

Equation (13), hinging on the energy definition 0
00E g p= − , could be 

also written in the form 
2 2

2 2

1 1 ( ) 1 0.
( ) ( )

rE p
B r mc B r mc

− + + =   … (15) 

This shows an explicit dependence on energy of the curves for any kind 
of objects which move on such curves which also holds for a detector. In the 
next section, we will use these mathematical descriptions to describe a 
polarized gravitational wave equation and the consequent adjustments 
needed for the detectors to function appropriately. 
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3. The polarization limit and the adjustments 

One can derive all the results for vibrating, resonant detectors. To 
pattern the derivation after the treatment of the idealized detector we should 
let it be wave-dominated ( vibrationE KT ). We can show that the 
displacements ( , )x ξ x tδ =  of its mass elements are described by 

( ,) ( )
n

n nξ t u xB= ∑    … (16) 

where the time-dependent amplitude for the n th mode satisfies the driven-
oscillator equation  

( ),2n
n n n n

n

tR
B

B Bω
τ

=+ +


    … (17) 

and where the curvature-induced driving term is 

( )3 ( )1) ((
4

) n jkj kk
n n

jA I e
t xR u

M M
x dρ= − =∫



  … (18) 

To Fourier-analyze the amplitudes of the detector and waves, we have 
1
2

1
2

( ) (2 ) ,( )

( )( ) (2 ) ,

t
n n

t
n

i

i

t B

A t

B e d

e dA

ω

ω

π ω ω

π ω ω

+− −

−

∞

∞

∞+

∞

− −

−

=

=

∫

∫





  … (19) 

and solve the equation of motion (18) and (19), to obtain, in the 
neighborhood of resonance, 

( )1
8             for  | |1| |

2

( )

.

n n jk jk

n n n

n
n

A I

i

e
MB

ω

ω ω ω
ω ω

τ

= ±
− +





   … (20) 

Also to calculate the total energy deposited in the detector by 
integrating 

3Force per unit volu
energy

( )
depos

me (Velocity) .
ited

d xdt
 

=  
⋅∫  …  (21) 
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Thereby we obtain 

( )

energy deposited in 1 ( )
th normal mo 4

.
de n jk j nkI e

n
AB dt

 
= −  ∫     … (22) 

We apply Parseval's theorem and combine with expression (19) to 
obtain20-23. 

energy deposited in
th norma

( ) ( ) ,
l mode n d

n νσ ν ν ν 
= −  ∫    … (23) 

where nσ   is given in Ref. [23], and (for ω−∞ < < +∞ ) 

2 2( ) ( ) 1
2 8

| | .Aν ν
ων ω
π

= =      … (24) 

It is shown that ( )ν ν  is the total energy per unit area per unit 
frequency carried by the waves past the detector24-25. One can obtain all the 
remaining cross sections by appropriate manipulations of this cross 
section25. In the  next  section. We use the mathematical tools for projecting 
out and integrating the transverse-traceless parts, which were developed the 
above discussions.  

4. Solving the wave equations 

The observed period of quadrupole vibration of the earth is 54 
minutes26-27. To analyze that mode of vibration, with all due allowance for 
elasticity and the variation of density in the earth, is a major enterprise. 
Therefore, for a first estimate of the cross section of the earth for the 
absorption of quadrupole radiation, one can treat it as a globe of fluid of 
uniform density held in the shape of a sphere by gravitational forces alone 
(zero rigidity). Let the surface be displaced from r a=  to 

2 (cos )r a Pa α θ= +    … (25) 

where θ  is polar angle measured from the North Pole and α  is the 
fractional elongation of the principal axis. The motion of lowestenergy 
compatible with this change of shape is described by the velocity field 

1,         ,         
2

 1 ,
2

x y xx y zξ α ξ α ξ α= − = − =   … (26) 
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which implies zero divergence and zero curl. The sum of the kinetic energy 
and the gravitational potential energy is derived as 

2 2
2 23 31 .

5 5 20
ME Ma
a

α α     = − − +          
   … (27) 

This shows that the angular frequency of the free quadrupole vibration is 
1

12
216 .

15
πω ρ 

  
=    … (28) 

The reduced quadrupole moments are 
2 22,        .

5 5xx yy zz
Ma MaI I Iα α= = =   … (29) 

Therefore the rate of emission of vibrational energy, averaged over a 
period, is 

2 4 6 2
peak

3
5

.
12

dE M
dt

a ω α − =   
   … (30) 

In this regard, the exponential rate of decay of energy by reason of 
gravitational wave damping, or gravitational radiation line broadening, will be 

2 44 .
25GWA Ma ω =   

   … (31) 

Finally, the resonance integral of the absorption cross section for 
radiation incident from random directions with random polarization is 

2
2

22
2
25GWd Ma( ) A .π πσ ν ν λ

λ
 = =   

 
  ∫   … (32) 

By evaluating this resonance integral, this model of a globe of fluid of 
uniform density would imply for the earth, with average density 5.517 3

gr
cm

, 

a quadrupole vibration period of 94 min, as compared to the observed 54 
min; and a moment of inertia 2(2 / 5)Ma as compared to the observed 

20.33Ma . These can be estimated as the correction factors for both effects 
and give for the final resonance integral 25 cm Hz∼ . 



10 FARRIN PAYANDEH 

5. Conclusion 

In this paper, by considering a transverse-traceless configuration for a 
gravitational wave form, we calculated the perturbations for small 
displacements. This configurations was used in order to find applicable 
constructions for a gravitational wave detector, which is aimed to be 
installed in the solar system. The dynamic analysis of the idealized masses-
on-spring detector, as developed in our investigations, is readily extended to 
a vibrating detector of arbitrary shape. The extension was carried out in Sec. 
3 and its main results are summarized in Sec. 4. Part of the energy that goes 
into a detector is reradiated as scattered gravitational radiation. For any 
detector of laboratory dimensions with laboratory damping coefficients, this 
fraction is fantastically small. However, in principle one can envisage a 
larger system and conditions where the re-radiation is not at all negligible. 
In such an instance one is dealing with scattering. The attempt here, was 
made to analyze such scattering processes. For a simple order-of-magnitude 
treatment, one can use the same type of scattering formula that one employs 
to calculate the scattering of neutrons at a nuclear resonance or photons at 
an optical resonance. In conclusion, the detectors are heavily based on the 
stress-energy tensors of the system, which are imposed on the spacetime 
geometry and consequently, on the geometric congruences. 
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[Abstract : The pivotal purpose of the present work is to study the issue related to an 
incompressible  viscous flow over a flat plat. The homotopy analysis transform method is 
used to obtain the analytical approximate solution of the famous Blasius equation. The 
HATM is amalgamation of the homotopy analysis scheme, Laplace transform technique and 
homotopy polynomials. The suggested method is not limited to the small parameter such as 
in classical perturbation technique. The numerical results obtained with the help of 
proposed technique indicate that the method is very easy to use and computationally very 
strong.] 

Keywords : Blasius equation; Flow over a flat plate; Homotopy analysis transform 
method; Viscous flow; Laplace transform method 

1. Introduction 
The Falkner-Skan equation is a nonlinear problem, whose solutions are 

the similarity solutions of 2-D incompressible laminar boundary layer 
equations. These type of two point boundary value problems cannot be 
solved directly in a closed form1. In a study Blasius2 presented a solution in 
the form of power series. In an another work Howarth3 employed the 
Runge-Kutta method to investigate  the flat plate flow. Abussita4 studied the 

∗ Corresponding author : Tel. +91-9461070550 
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Blasius equation for a flow through a flat plate and established the existence 
of the solution. Further, Asaithambi1 used the finite difference approach to 
obtain the numerical solution of the Falkner-Skan problem. In recent years 
Abbasbandy5, Wang6, Khoramishad and Mortezaei7, Esmaeilpour and 
Ganji8 and Ganjiet al.9 studied the Blasius equation by using various 
analytical and numerical techniques.  

The homotopy analysis method (HAM) was firstly propounded and 
developed by Liao10-12. It was successfully applied to 3-D boundary-layer 
nano fluid flow with heat transfer past a stretching sheet13, MHD 3-D flow 
of viscoelastic nano fluid with nonlinear thermal radiation14, magneto-
hydrodynamic axisymmetric flow of third grade fluid through a stretching 
cylinder15 and to some other fields, as well. Recently, many research 
workers combined the various analytical methods with the classical Laplace 
transform technique to develop new analytical techniques such as Laplace 
decomposition algorithm16,17, homotopy perturbation transform scheme18-20 
and homotopy analysis transform method (HATM)21-23. 

The present study employs the HATM obtained analytical solution of 
Blasius equation. The HATM is an effective coupling of HAM and the well 
known Laplace transform algorithm, which is one of the most powerful and 
useful method for analytical solution with infinite boundary conditions. The 
HATM has an auxiliary parameter ћ for insuring the convergence of the 
solution. The results obtain by using the HATM are compared with the 
known results, which verifies the validity of the proposed approach. 

2. Mathematical model of the problem 
The boundary layer equations are taken in the form24:

 
0u v ,

x y
∂ ∂+ =
∂ ∂

 … (1) 

2 2

2 2
1u u p u uu v ,

x y x x y
ν

ρ
 ∂ ∂ ∂ ∂ ∂+ = − + + ∂ ∂ ∂ ∂ ∂ 

 … (2) 

2 2

2 2
1v v p v vu v .

x y y x y
ν

ρ
 ∂ ∂ ∂ ∂ ∂+ = − + + ∂ ∂ ∂ ∂ ∂   

… (3) 
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In the above equations p is independent of z. It is well known that  a 
plate placed edgewise will not significantly disturb a uniform stream, as 
shown by practice in the presence of air and water, an ideal flow of 
primitive motive is the uniform flow24: 

, 0 for all , .u U v x y∞≡ ≡   ... (4) 

The standard Blasius flat-plate problem is interpreted as that of 
obtaining a solution of Eqs. (1)-(3) varying from Eq. (4) only in the 
neighborhood of the plate the extent of which shrinks to zero as 0→v . As 
the velocity of potential flow is assumed to be constant, consequently

0dp
dx

≡ . Therefore the boundary-layer equations takes the following form
  

0u v ,
x y

∂ ∂+ =
∂ ∂  

 … (5) 

2

2
u u uu v
x y y

ν∂ ∂ ∂+ =
∂ ∂ ∂

   … (6) 

y = 0: u = v = 0, 

y= ∞ : u = ∞U .    … (7) 

Making use of a dimensionless variable (η ) expressed as: 

0 5.y Re ,
x

η =    … (8) 

where Re indicates the Reynolds number and represented as:  

Re U x
ν
∞= . 

Thus the  Eqs. (5)-(6)  can be converted to popular Blasius equation 

,0
2
1

2

2

3

3

=+
ηη d

fdf
d

fd   … (9) 
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having the boundary conditions: 

,0,0 ===
η

η
d
dff

 

,1, =∞→
η

η
d
df

  … (10)
 

where f is related to u  by 
uf .

U∞
=  

This is aparticular case of  2-D laminar boundary layer flows through a 
semi infinite flat plate which is given by Falkner-Skan equation:  

( )
3 2

2
3 2

1 1 1 0
2

d f d f( ) f f ( ) ,
d d

µ µ η
η η

 + + + − =   … (11) 

with boundary conditions: 

,0,0 ===
η

η
d
dff  

,1, =∞→
η

η
d
df

 … (12)  

where µ  is a constant.  

For 0≥µ there following cases arise: 

 0µ =  : Blasius flow past a flat plate with a sharp edge. 

 0 1µ< < : Flow past a wedge with half angle )1/(2/1 += µµπθ  

  with .2/0 2/1 πθ <<  

 1µ =  : Heimenz flow in the direction of a plane stagnation point. 

 1 2µ< <  : Flow into a corner with .2/2/1 πθ >  

 2 µ<  : There is no simple ideal flow. 
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3. Basic idea of HATM 
In order to demonstrated the solution process of the HATM, we take a 

3rd order non-homogenous nonlinear ordinary differential equation having 
the initial conditions written as 

1 2 3( ) ( ) ( ) ( ),''' '' 'f b x f b x f b x f g f+ + + =  … (13) 

(0) , (0) , (0) ,' ''f f fα β γ= = =  … (14) 

Applying the Laplace transform Eq. (13), we have 

1 2 3[ ] [ ( ) ( ) ( ) ] [ ( )].''' '' 'L f L b x f b x f b x f L g f+ + + =  … (15) 

On employing the differentiation property of the Laplace transform, 
it yields. 

1 2 32 3 3 3
1 1[ ] [ ( )] [ ( ) ( ) ( ) ] 0.'' 'L f L g f L b x f b x f b x f

s s s s s
α β γ− − − − + + + =  … (16) 

We express the nonlinear operator in the following form 

))];(([1)];([)];([ 332 qgL
ssss

qLqN ηφγβαηφηφ −−−−=  

 
1 2 33

1 [ ( ) ( ; ) ( ) ( ; ) ( ) ( ; )].'' 'L b x q b x q b x q
s

ϕ η ϕ η ϕ η+ + +  … (17) 

In the Eq. (17) ]1,0[∈q  and );( qηφ  is a function of η and q. The 
homotopy is developed as follows 

)],([)()]();([)1( 0 ηηηηφ fNqHfqLq =−−  … (18) 

where 0)( ≠ηH indicates an auxiliary function, ћ 0≠  represents an auxiliary 
parameter and )(0 ηf  stands for an initial guess of )(ηf . It is obvious that if 
the embedding parameter 0=q  and ,1=q it yields the following results 

),()1;(),()0;( 0 ηηφηηφ ff ==  … (19) 
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respectively. Thus, as q increases form 0 to1, the solution );( qηφ  varies 
from the initial guess )(0 ηf  to the solution ).(ηf  Making use of Taylor 
series );( qηφ is expressed as follow 

,)()();(
1

0 ∑
∞

=

+=
m

m
m qffq ηηηφ  … (20) 

where 

.
);(

!
1)( 0=∂

∂
= qm

m

m q
q

m
f

ηφη  … (21) 

If the values of ),(0 ηf
  and )(ηH  are properly selected, the series 

(20) converges at q = 1, then we get 

,)()()(
1

0 ∑
∞

=

+=
m

mfff ηηη  … (22) 

which must be one of the solutions of the given nonlinear equations. Using 
the definition21, the governing equation can be derived from the zero-order 
deformation18.  

Define the vectors in the following manner 

)}.(),...,(),({ 10 ηηη mm ffff =  … (23) 

Differentiating the Eq. (18) m-times w.r. to q and after that dividing 
them by m! and lastly letting ,0=q  we have the subsequent deformation 
equation: 

).()()]()([ 11 −− ℜ=− mmmmm fHffL ηηχη   … (24) 

Using the inverse Laplace transform, we get 

)],()([)()( 1
1

1 −
−

− ℜ+= mmmmm fHLff ηηχη   … (25) 

where 

,)];([
)!1(

1)( 01

1

1 =−

−

− ∂
∂

−
=ℜ qm

m

mm q
qN

m
f ηφ  … (26) 
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and  





>
≤

=
.1,1
,1,0

m
m

mχ  … (27) 

When ,∞→m  we arrive at the accurate approximation of the Eq. (9) 

( )

1 2 3

1
1 2 33

( ) ( ) ( ) (1 )

1 ( ) ( ) ( ) ( )

m m m mf f
s s s

L L b x f b x f b x f g f
s

α β γη χ η χ−

−

 = + − − + +  

 + + + −′′ ′  

 

  … (28)

  

In this manner, it is easily to be obtained )(ηmf  for 1≥m  
and approximate solution is given 

∑
=

∞→+=
k

m
mfkff

0
0 )()()( ηηη , … (29) 

where 

+++=
2

2
2

0
)0()0()0()(

η
η

η
ηη

d
fd

d
dfff  

  =
1

1

0

)0(
−

−

= ∂
∂∑ i

ij

i

i f
η

η . … (30) 

The nonlinear term g(f) is expanded in the form of homotopy 
polynomials as25 

( ),,)( ,3,2,1,0
0

k

m

k
k fffffPfg ∑

=

=  … (31) 

where mP  are the homotopy polynomial which are calculated by the 
following formula 

( ) .0,
));((

!
1

0
,1,0 ≥








∂∂

∂
=

=

m
qqg

m
fffP

q
m

m
m

mm
ηφ



 
… (32) 
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Combining Eqs. (28) and (31), we get 

( )

( )

2

1

1
1 1

1 2 3 0, 2,3
0

( ) ( ) ( ) (1 )
2

1 ( ) ( ) ( ) ( ) ( ) ( ) , ,

m m m m

m

k k
k

f f

L L b f b f b f P f f f
s

γηη χ η χ α βη

η η η η η η

−

−
− −

=

= + − − + +

  
+ + + −′′ ′     

∑

 

 

 

 

1 2m , , ...=  … (33) 

From Eq. (33), we calculate )(ηmf  and substitute these values in (29), 
we obtain the analytical approximate solution of Eqs. (9)-(10). The novelty 
of our proposed algorithm is that a new functional (33) is constructed and is 
expanded the nonlinear form as a series of the homotopy polynomials. 

4. Solution of the problem 

To solve the Eqs. (9)-(10) by HATM, we apply the Laplace transform 
on Eq. (9), it yields 

,1
2
1][ 2

2

33 







+−

ηd
fdfL

ss
afL  … (34) 

where (0).''a f=  

The nonlinear operator is  

,);();(1
2
1)];([)];([ 2

2

33 







+−= q

d
dqL

ss
aqLqN ηφ

η
ηφηφηφ  … (35) 

and thus 

[ ] ( )1103311 ,,,1
2
1)1()( −−− +−−= mmmmmm fffP

ss
afLfR χ

 
… (36) 

and the homotopy polynomials are given by  

( ) ∑
−

=
−−−− ′′=

1

0
11101 ,,,

m

r
rrmmm fffffP  . … (37) 
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Using the initial approximation 
2

)(
2

0
ηη af =  and the iterative scheme 

(25), we found the various components of the series solution: 

,
!52

)(
52

1
ηη af =  

,
4

11
!8

1
!5

)1(
2

)( 832
52

2 ηηη aaf 

 ++=  … (38) 

2 5
2 2 3 8 4 3 11

3
1 41 375 1( ) (1 ) (1 ) ,

2 5! 8!12 8 11!
af a aηη η η= + + + +

      

Proceeding in the similar manner, the remaining of the iterates of the 

series solution can be completely derived and the solution is thus entirely 

obtained. Hence, the series solution when 1−=  is  

.
!11

1
8

375
4

11
!8

1
!52

)( 11483
52

+−+−= ηηηη aaaf  … (39) 

The value of a  is evaluated by Howarth3 using numerical technique. 
Inserting this value for 0.332057,a =  into Eq. (39) yields the approximate 
solution of Blasius equation. 

5. Convergence of the developed method 

HATM series solution of Blasius equation (9) contains auxiliary 
parameter .  This parameter has pivotal role in enhancing and managing 
the convergence of the solution of Blasius equation (9). To obtain a 
suitable range of  the − curve is shown in Fig. 1. From this Fig. 1, it is 
observed that suitable range for  is 1.3 0.7.− ≤ ≤ −  
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Figure 1 

− curve for f  at 3rd order of approximation. 

6. Results and discussions 
The numerical results were calculated up to three iterations and 

presented in Tables 1-2 and Figures 2-3. From the Tables 1-2, it can be seen 
that the results are in an excellent agreement with reported in data8-9. The 
Figures 2-3 depicts that the results obtained by the suggested approach are 
very near to the results obtained by Blasius2.   

Table 1 
Comparative study between the results of HATM, HPM9 and  

Numerical method8 for ).(ηf  
η  HATM HPM9 NM8 

0.0 0 0 0 
0.4 0.0265598 0.0265598 0.0266762 
0.8 0.1061081 0.1061081 0.1061082 
1.2 0.2379484 0.2379484 0.2379487 
1.6 0.4203202 0.4203202 0.4203207 
2.0 0.6500224 0.6500224 0.6500243 
2.4 0.9222734 0.9222734 0.9222901 
2.8 1.2308450 1.2308450 1.2309773 
3.2 1.5682875 1.5682875 1.5690949 
3.6 1.9255896 1.9255896 1.9295251 
4.0 2.2897787 2.2897787 2.3057464 
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Table 2 

Comparative study between the results of HATM, HPM9 and  
Numerical method8 for ( ).'f η  

η  HATM HPM9 NM8 
0.0 0 0 0 
0.4 0.1327640 0.1327640 0.1327641 
0.8 0.2647088 0.2647088 0.2647094 
1.2 0.3937756 0.3937756 0.3937761 
1.6 0.5167558 0.5167558 0.5167567 
2.0 0.6297563 0.6297563 0.6297657 
2.4 0.7288906 0.7288906 0.7289819 
2.8 0.8108693 0.8108693 0.8115096 
3.2 0.8726718 0.8726718 0.8760814 
3.6 0.9087097 0.9087097 0.9233296 
4.0 0.9027999 0.9027999 0.9555182 

 

 
Figure 2 

The comparison between the results obtained by HATM and Blasius2 for ( ).f η  
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Figure 3 

The comparison between the results obtained by HATM and Blasius2 for 'f ( ).η  
7. Concluding remarks 

In this article we have analyzed the famous Blasius boundary layer 
equation. The HATM and symbolic computation have been used to solve 
the nonlinear differential equation. The results derived by the present 
method are in a very good agreement with the existing results. HATM gives 
us a very easy way to enhance and manage the region of convergence of 
the series solution by selecting proper value of .  The results reveal that 
suggested scheme is a very efficient and computationally attractive 
approach to investigate nonlinear systems of physical significance. 
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[Abstract : In this paper simple power law is used to describe structure of turbulent 
boundary layer in a pipe flow. Dependency of the power law constants on Reynolds 
Number is investigated. Friction factor is computed considering different velocity profiles. 
Computed friction factor is compared with the recent data.] 

1. Introduction 

The smooth pipe flow experimental data reported by McKeon have 
been dully exposed to the profession through published paper McKeon,  
et al.1 Some velocity measurement data reported by McKeon et al.1 (denoted 
MK) are plotted in Fig.1. The time mean velocity u is plotted along abscissa 
and corresponding distance y  from the wall is plotted along ordinate. Only 
three measurements are plotted out of nineteen measurements in the 
Reynolds number, Re range, 7.4345 04E +  to 3 5724 07. E + , where  
Re 2VR / ν= , V = average velocity in the pipe, R = radius of the pipe and 

=ν kinematic viscosity of the fluid flowing through the pipe. No similarity 
is seen in the velocity profiles. It is seen that center line velocity cU  for the 
second profile (chronological order as given in the legend of Fig. 1) is 
higher than that of first profile. Consequently average velocity and Reynolds 
__________________ 
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number for the second profile is higher than that of first one as kinematic 
viscosity is nearly constant for two cases. Reynolds number for the third 
profile is highest though the centerline velocity is least. This is due to 
numerical value of the kinematic viscosity which is about 0.007 times the 
kinematic viscosity of the first and second profile.  For the MK data, 
kinematic viscosity varies from 1 0854 07. E − to 1 5313 05. E − .  

 
Fig. 1 

Dimensional plot of velocity distribution in a smooth pipe. 
Darcy deduced the following empirical velocity profile2 on the basis of 

his careful measurements  

 

3/2

*
5.08 1cU u y

v R
−  = −  

 … (1) 

where cU =  velocity at the centerline of the pipe, time mean velocity u at a 
distance y from the wall, =*v shear velocity, and pipe radius R. It was 
pointed out in the literature that Darcy’s formula gives good agreement at all 
points except those near the wall with / 0.25y R < . Eq. (1) is compared with 
the MK data and data of Hultmark et al.3,4 (denoted HK) in Fig. 2. It is 
revealed that Eq. (1) gives good agreement with experimental data for 

5.0/ >Ry  only. 

Many formulas have been proposed latter to depict velocity distribution 
in a turbulent pipe flow. Pipe flow is also a kind of turbulent boundary layer 
problem. Hence, velocity distribution formulation for turbulent boundary 
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layer may be applicable to pipe flow also. Total velocity profile is generally 
divided into four regions: viscous sub-layer, buffer region, logarithmic 
region and outer region. However, broadly boundary layer may be divided 
into two regions only, i.e. wall/inner region and outer region. Inner region is 
consisting of viscous sub-layer, buffer region, and logarithmic region. 
Formula describes velocity distribution at the wall region is the “law of the 
wall” and “law of the wake” describes the flow at the outer region.  

 
 
 
 
 
 
 

 

 
 

 
Fig. 2 

Darcy’s law compared with experimental data. 
Law of the wall : 

Prandtl5 concluded that time mean velocity, u near the smooth wall 
must depend upon density ρ  and viscosity µ  of the fluid, the shear stress 
at the wall wτ  and on the distance from the wall, y . Thus, near the smooth 
wall there is a functional relationship  

 ( )yuu w ,,, τµρ=  … (2) 

 From dimensional analysis the functional relationship can be written in 
the from  

   *

*





=

ν
yvf

v
u

 … (3) 

in which shear velocity, * /wv τ ρ= and kinemetic viscosity, ρµν /= . 
Introducing inner variables, */ vuu =+  and ν/*yvy =+  equation (3) can 
be re-written as  
 ( )u f y+ +=  … (4) 
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Equation (4) is called law of the wall. Velocity data of  MK and HK in 
a smooth pipe for Re range 7 4345 04. E + ≤ Re 3 5724 07. E≤ +  and 
8.1330 04 5.9750 06E Re E+ ≤ ≤ +  respectively are plotted in terms of inner 
variables in Fig. 3.  

 
Fig. 3  

Experimental profiles of mean velocity in terms of inner variables importance  
of plotting the profiles in terms of inner variables.  

It is revealed that velocity profiles are self similar in the wall region and 
it supports the contention that the wall region is universal. On the other 
hand, profiles in the outer region depend on Reynolds number.   

In Fig. 4, two velocity profiles from two different sources (MK and HK) 
having nearly equal Reynolds numbers but with different centerline 
velocities have been plotted. Figs. 3 and 4 show experimental evidence for 
the contention that the ++ yu , variables are indeed a good choice for 
describing the boundary layer and Re  can be a reliable quantity to present 
the flow information.  

 

Fig. 4  
Similarity of flows. 
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Very close to the wall, experimental data can be described by linear 
relationship, ++ = yu . This region is viscous sub-layer where viscous 
stress predominates. Prandtl5 proposed logarithmic form of the law of the 
wall (Eq. (4)) for variation of velocity in the so-called overlap region at 
large distance from the wall 

 1 lnu y B
κ

+ += +  … (5) 

which was derived analytically through his mixing length concept. The term 
κ is the von Karman constant and B is the constant of integration. The 
existence of the logarithmic law can be confirmed by Nikuradse6 
measurements on smooth pipe flow and constants 4.0=κ  and 5.5=B  
can be obtained for the data2. In between the linear region and overlap 
region there is buffer region. Fig. 5 shows how the linear law and 
logarithmic law trace pipe flow data.  

Area of controversy has been whether values of constants appearing in 
the logarithmic law are universal. Many values of κ  and B  can be found in 
the literature. Coles7 considered value of 40.0=κ  and 1.5=B in turbulent 
boundary layer computation, while Coles and Hirst8  used 41.0=κ  and 

5=B . Zagarola and Smits9 analyzed their pipe flow data which led to the 
values of log-law constants 436.0=κ  and 15.6=B , whereas McKeon  
et al.1 found 421.0=κ  and 60.5=B  (these values were used in Fig.5). 
Analyzing his zero pressure gradient turbulent boundary layer data, 
Osterlund et al.10 found 38.0=κ  and 1.4=B . In case of channel flow, 
Zanoun et al.11 fitted logarithmic law in overlap layer and found best fit for

379.0=κ  and 05.4=B .  

The region described by the logarithmic law is called logarithmic 
region/overlap region where both, viscous and turbulent stresses are present.  
Region starting from the wall to the end the overlap region is called wall 
region. It is observed from Fig. 5, extent of the wall region depends on 
Reynolds number. Both laws, linear and logarithmic do not capture the data 
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points in the buffer region. Spalding12 has given a special form of law of the 
wall  

( ) ( ) ( ) ( )  
24
 

6
 

2
  1 

432
 












−−−−−+==

+++
++++ + uuuueAuufy u κκκκκ  … (6)  

where BeA κ−= and value of κ and B  can be used suitably. Fig.5 shows 
how Eq. (6) traces pipe flow data. It can be seen easily that the Spalding’s 
formulation captures viscous sub-layer, buffer layer and logarithmic layer 
well without however describing the good trace of data points in the outer 
(wake) region. Spalding’s formula has the undisputed advantage over the 
log-law that it is valid all the way to the wall where it satisfies the no-slip 
boundary condition. The unique feature of this law is that it represents +y as 
a function of +u rather than +u as a function of +y . This feature has made 
computations using law of the wall much easier to perform.  

 
Fig. 5  

Laws of the wall compared with experimental data. 

Law of the wake : 

Beyond the overlap region there is outer layer where influence of wall 
is absent in practical sense and turbulent stress predominates. Fig. 5 shows 
that experimental data at the outer region deviate from log law. This 
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deviation looks like a wake when viewed from the free stream. Existence of 
wake can be found in channel and pipe flow and in turbulent boundary layer 
but in varying amount. Logarithmic law and Spalding’s law are too simple 
for describing the wake region. Accordingly, based on the idea of Coles7, 
law of the wall should be replaced by  

 ( ) ( ) ( )u f y A x w η+ += +  … (7) 

where ( )A x is the amplitude function, ( )w η  is the wake function and 
/ /y R y Rη + += = , R being the radius of the pipe. The wake function is 

defined as the difference between the measured data in the outer region and 
extension of the logarithmic law in this region. Coles7 proposed

( ) ( ) /A x x κ= Π , where ( )xΠ  is wake/profile parameter which is 
independent of the stream wise distance, x  for uniform pipe and channel 
flow and the boundary layer on a flat plate subjected to zero pressure 
gradient. Hence, for pipe flow ( )xΠ  can be written as Π . Hinze13 proposed 
empirical equation for wake function  

 ( ) 22sin
2

w πη η =   
 … (8) 

Using Eq. (8), Coles  “law of the wake” (log-wake law) takes the  form  

 21 ln 2 sin
2

u y B π η
κ κ

+ + Π  = + +   
 … (9) 

Evaluating Eq. (9) at 1=η  centerline velocity can be obtained 

 *
1/ ln 2c cU U v R B
κ κ

+ + Π= = + +  … (10) 

Subtracting Eq. (9) from Eq. (10), one obtains velocity defect law  

21 ln 2 2 sin
2c

yU u
R

π η
κ κ κ

+
+ +

+

 Π Π  − = − + −      
 … (11) 

The part of Eq. (11) in square bracket is the logarithmic part of the 
defect law in outer scale, applicable for overlap region. The laws (Eqs. (9) 
and (11)) are applicable to the whole boundary layer except viscous sub-
layer and buffer layer. It can be shown that log-wake law and defect law do 
not satisfy no-slip condition at the wall and do not meet the requirement of 
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non-zero velocity gradient at the pipe axis. In spite of these shortcomings, 
many boundary layer computations are based on these laws. As log-wake 
law/defect law is a composite law, it is difficult to ascertain the end point of 
the overlap region or beginning of the outer region. For this reason, 
Coleman14 located the beginning of the outer region as the non-dimensional 
elevation +y at which the velocity profile curve deviated by %1  from its 
logarithmic part alone. However, extent of inner region can be determined if 
two separate laws, one for inner region and other for outer region, are used 
to describe the flow. Mazumdar and Mandal15 showed that structure of 
turbulence in a pipe flow can be described satisfactorily considering 
Spalding’s law of the wall for inner region and Persen’s16 wake law for the 
outer region. Persen’s  formulation has the form 

 ( ) ( )2
0

2exp
y y

u u uξ
α

+ +
+ + +

∞ ∞

 − − = − − 
  

 … (12) 

where 
                               as    cu U y R→ →   

 0    as    c * c *u U / v U y Rv / R yξ ν+ + + + +→ = = → = =  … (13) 

=+
∞u constant and  

 
( ) ( )

( )
1

2 2
0 1

ln ln1 u u u

y y

ξ

α

+ + +
∞ ∞

+ +

− − −
=

−
 … (14) 

Here 1 1( , )u y+ + is the point where law of the wall meets the law of the 
wake. Investigating MK data, Mazumdar and Mandal15 showed that inner 
region occupied about 16.44% of the total boundary layer and this ratio is 
independent of Reynolds number.   

Many values of Π were proposed by the researchers. Zagarola and 
Smits9 arrived at 0.329Π =  from his pipe flow measurements, whereas MK 
found 0.253Π =  for pipe flow. Analyzing zero pressure gradient (ZPG) 
flow, Coles found 55.0≈Π , whereas Osterlund16 found 0.691Π = . 
Coleman obtained 0.19Π = ; Nezu and Rodi17 reported a value of 20.0=Π ; 
Kirkgoz18 observed  a value of 1.0=Π and Cardoso et al.19 observed 
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077.0−=Π  in smooth channel flow. Considering the reported values of  
Π , it can be stated that channel flows have minimum wake amongst the 
three cases (pipe flow, channel flow and ZPG boundary layer)  whereas 
ZPG flows over a flat plate  have highest wake and pipe flows stand in the 
intermediate position. 

Evaluating Eq. (10) with the values of 0.421,κ = 5.6B = and 
2 / 1.2κΠ = as proposed MK (these are used althrough the paper unless 
otherwise mentioned) 
 2.375 ln 6.800cU R+ += +  … (15) 

Coefficient of determination, 2r between Eq. (15) and observed values 
is determined as 0.998 where the correlation coefficient r has the form   

  
( ) ( )2 2

2 2

i i
i i

i i
i i

x y
x y

Nr
x y

x y
N N

−
=

− −

∑ ∑∑

∑ ∑∑ ∑

 … (16) 

where symbol ∑∑
=

=
N

i 1
, ( )ici Ux observed+=  and i cy U += (calculated)i. 

However, the variables can be considered interchangeably. Average 
error in estimation avE is determined using the following relation  

observed calculated
avE

N
−

= ∑  

The average error for combined data (MK and HK) is determined as 
±0.130, whereas average error for MK and HK data are ±0.081 and ±0.232 
respectively. Fig. 6 shows how Eq. (15) correlates experimental results. 

 
 
 
 
 
 

 
 

 
Fig. 6 

Centerline velocity and theoretical prediction. 
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Besides Coles “law of the wake”, there are other laws of velocity 

distributions available in the literature: 

Introducing the approximation, 2 2 3sin 3 2
2
π η η η  ≈ −  

, wake law can 

be simplified as below (denoted  simplified wake law)  

Simplified wake law:         

 ( )32 232ln1 ηη
κκ

−Π++= ++ Byu  …  (17) 

Lewkowicz20 : 

( ) ( )( )






 −−

Π
−−Π++= ++ ηηηηη

κκ
2111232ln1 22Byu  …  (18)       

Jones21: 

( )ηη
κ

η
κκ

232
3
1ln1 23 −Π+−+= ++ Byu  … (19) 

Power law : 

Main purpose of the present investigation is to use simple power law to 
depict velocity distribution in a pipe flow. A velocity profile can be 
empirically expressed as  

11

1

1

1

1
nn

c

m
R
ym

U
u η=





=

  
or,     1

1
1

1

1

1
nn

c

m
R
ym

U
u η=





= +

+

+

+
 … (20) 

where 1m  and 11/ n  are curve fitting constant and exponent respectively. 
Time mean velocity u is normalized by centerline velocity of pipe Uc and 
distance y is normalized by radius of the pipe R. Time mean velocity u=Uc 

when distance Ry = . MK and HK data are plotted in the above scale in  
Fig. 7.  
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Fig. 7  
Variation of mean velocity scaled by centerline velocity. 

It is revealed that, the velocity profile becomes more and more uniform 
as Reynolds number increases. Fig. 7 shows no self similarity but form a 
family of curves for different Reynolds numbers. Reynolds number 
dependency of the curve is investigated here using MK and HK data. Unlike 
Fig.1, this plot has a definite trend with Reynolds numbers.  

Values of m1 and n1 are determined using method of least-squares. A 
brief description of the working principle of the method is given here.  

Let us consider data set ( )i ix y / R= , ( )ici Uuy /=  and Ni ,.....3 ,2 ,1= , 

where N  is number of data points. It is desired to fit 1/1
1

nxmY =  to the 

data. Straight line form of the equation 

x
n

mY ln1lnln
1

1 +=  

Sum of square of errors 

 
2

1
1

2 ln1lnln∑ 





−−= ii x

n
myE  
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Values of 1m  and 1/1 n  are determined by setting 0/ 1
2 =∂∂ mE and 

( ) 0/1/ 1
2 =∂∂ nE . This procedure leads to  

( )22

2

1 lnln
lnlnlnlnlnln

∑∑

∑∑∑ ∑

−
−=

ii

iiiii

xxN
xyxxym  

( )22
1 lnln

lnlnlnln1
∑∑

∑ ∑∑

−
−=

ii

iiii

xxN
xyyxN

n
 

and coefficient of determination  

( ) ( )
( )∑ ∑−

∑ ∑ ∑−+=
Nyy

Nyyxnymr
ii

iiii

/lnln
/lnlnln/1lnln

22

2
112  

where r is correlation coefficient. Values of 1m , 
1

1
n

 and 2r are determined 

using data of MK and HK. Variation of 1m  and 1n  are plotted against Re in 

Figs. 8 and 9. Values of 2r  are given in Table 1.   

 
 

 

 
 

 

 

 

 

 

Fig. 8 

Variation of curve fitting constants with Re. 
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Fig. 9  

Variation of 1 2 3, &n n n  with Re. 
Table 1 

Coefficients of determination for different power laws. 

      McKeon et al. (2004a) data      Hultmark et al. (2012, 2013)
Re r2(*) r2(**) r2(***) Re r2(*) r2(**) r2(***)

7.435E+04 0.890 0.856 0.887 8.133E+04 0.841 0.800 0.841
1.446E+05 0.949 0.934 0.948 1.456E+05 0.859 0.823 0.859
2.340E+05 0.980 0.971 0.979 2.466E+05 0.855 0.813 0.855
3.096E+05 0.991 0.984 0.990 5.125E+05 0.891 0.859 0.891
4.109E+05 0.995 0.990 0.994 1.055E+06 0.909 0.884 0.909
5.369E+05 0.997 0.993 0.996 2.083E+06 0.950 0.936 0.951
7.536E+05 0.997 0.993 0.997 3.951E+06 0.975 0.964 0.975
1.031E+06 0.997 0.993 0.996 4.000E+06 0.991 0.985 0.991
1.346E+06 0.997 0.995 0.997 5.975E+06 0.992 0.986 0.992
1.795E+06 0.997 0.994 0.996

2.363E+06 0.997 0.994 0.996   (*) Curve : u/Uc = m1(y/R)1/n1

3.105E+06 0.996 0.994 0.996     (**) Curve: u/Uc = (y/R)1/n2

4.462E+06 0.997 0.995 0.996     (***) Curve: u+ = m3(y+)1/n3

6.113E+06 0.997 0.996 0.997
7.806E+06 0.998 0.997 0.997
1.031E+07 0.998 0.997 0.998
1.372E+07 0.998 0.998 0.998
1.831E+07 0.999 0.998 0.998
3.572E+07 0.999 0.997 0.998
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It is revealed that curve fitting constant 1m is a slowly decreasing 
function of Re. It varies within a small range 231.1007.1 1 ≤≤ m with an 
average value of 1.062. Contrary to 1m , value of 1n  increases as Re 
increases. 1n  ranges between 3.735 to 11.301 with an average 8.660.  

As the average value of 1m  is nearly equals to 1, an attempt has been 
made to derive a similar velocity distribution considering 11 =m . Modified 
equation takes the form   

2

2

1/
1/

n
n

c

u y
U R

η = =  
or,   

2

2

1/
1/

n
n

c

u y
U R

η
+ +

+ +

 
= =  

 … (21) 

Similar analysis (least square method as done earlier case) is done to 
determine values of 2n (using MK and HK data) which lead to  

2
2

ln ln1
ln

i i

i

y x
n x

= ∑
∑

 

and coefficient of determination  

( ) ( )
( )

2
22

22

1/ ln ln ln /

ln ln /

i i i

i i

n x y y N
r

y y N

−
=

−

∑ ∑
∑ ∑

 

Values of 2n  are plotted against Re in Fig. 8 and 2r are given in  
Table 1. Eq. (20) can be re-arranged as   

( ) ( ) ( )1 1

1

1/ 1/
1 1/

n nc
n

Uu m y k y
R

+
+ + +

+
= =  

where
( ) 1

1 1/
c

n
Uk m

R

+

+
=  

Attempt has been made to fit the similar equation as above to the data 
but the equation is considered in its general form 

 ( ) 31/
3

n
u m y+ +=  … (22) 
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where new constant 3m k≠ and 3 1n n≠ .Values of m3, n3 and correlation 
coefficient, r are determined and those are depicted in Figs. 8, 9 and in 
Table 1 respectively. It is observed that value of m3 is increased with Re,  
but values of n3 is very close to n1, average deviation 

( )2
1 3 / 0.002n n N− = ±∑ . Correlation coefficient for two cases curve 

fittings are also very close to each other.  

Average velocity : 
Average velocity in a pipe may be defined in terms of radial co-ordinate 

r or wall co-ordinate y , where rRy −= and dy = − dr. The distance ‘y’ 
is measured from the wall while ‘r’ is measured from the center of the pipe.  

dyuy
R

udy
R

rdru
R

V RRR
∫∫∫ −==
02002

222.1 π
π

 

Introducing inner variables */ vuu =+ , ν/*yvy =+
 and 

ν/*RvR =+  

 +++

+

++
+ ∫∫

++

−= dyyu
R

vdyu
R
vV RR

02
*

0
* 22

 … (23) 

Consequently  

 
0 0

2 44
R RVRRe u dy u y dy

Rν

+ +
+ + + + +

+= = −∫ ∫  … (24) 

Substituting Coles log-wake law in Eq. (23) one obtains  

 2
1 3 4ln

2*V v R B
κ κ κ κπ

+ Π Π = + + − −  
  

 2
1 3 4ln

2*V V / v R B
κ κ κ κπ

+ + Π Π= = + + − −  … (25) 

Considering ,421.0=κ 6.5=B and 20.1/2 =Π κ  

 394.2ln375.2/ * +== ++ RvVV  … (26) 
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Eq. (26) is plotted in Fig. 10. It is observed that through the Eq. (26), 

average velocity can be predicted with r2 = 0.998 and average error
0 161avE .= ± . The average errors are different for two sets of data. For MK 

data and HK data avE  are 0.137±  and 0.214±  respectively. If wake is 

neglected, +V can be approximated as 2.375ln 2.037V R+ += + .  

It can be shown easily that the relation 2.375ln 2.037V R+ += + will 
produce same correlation with the data as in case of Eq. (26). However, 
average error will be different. Average error avE  is determined as 516.0±  
which is higher than that in case of Eq. (26).  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10  

Analytical estimate of average velocity compared with data.   
Introducing dimensionless centerline velocity in Eq. (25), average 

velocity turns out   

 2
4

2
3

κπκκ
Π−−Π−= ++

cUV  …  (27) 

Consequently  

 2
4

2
3

κπκκ
Π+Π+=− ++ VUc  … (28a) 

and considering 421.0=κ and 20.1/2 =Π κ , the quantity  

 4.406cU V+ +− =  … (28b) 
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It is evident beyond doubt that in a turbulent pipe flow, the quantity

( )cU V+ +−
 
has a constant numerical value. 

If wake is neglected (only logarithmic law is considered), that is, 
0=Π , the Eq. (28a)  reduces to   

 
κ2
3=− ++ VUc  … (29) 

For the experimental data of Nikuradse6, MK, and HK values of  

( ) 4.07,cU V+ +− = 4.314  and 4.416 respectively. Considering 0.421κ = , 

Eq. (29) gives ( ) 3.563cU V+ +− = . 

Theoretical expression for average velocity will be different from  
Eq. (25) if other velocity distribution is considered. Some other expressions 
for average velocity are given below:  

Simplified wake law:  

397.2ln375.2
2
3

5
3ln1 +=−Π++= +++ RBRV

κκκ
 … (30a)  

403.4=− ++ VUc  … (30b) 

Lewkowicz20 : 

same as +V obtained from simplified wake law  

Jones21 : 

318.2ln375.2
15
23

5
3ln1 +=−Π++= +++ RBRV

κκκ
 … (31a) 

 690.3=− ++ VUc  … (31b) 

It can be shown easily that the ratio / cV U+ +  is not a constant quantity. 

The ratio ++
cUV / can be written as 
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constant1 1c c c

c c c c

U U V U VV
U U U U

+ + + + ++

+ + + +
− + −

= = − = −  … (32) 

Substituting Eq. (15) and Eq. (28b) in Eq. (32) 

 4.4061
2.375ln 6.800c

V
U R

+

+ += −
+

 … (33) 

Constants appearing in the above equation depend on choice of velocity 
distribution law and value of , Bκ and Π. Fig. 11 shows the variation of 
observed quantity, / cV U+ + against R+ . The ratio, / cV U+ +  is a slowly 
increasing function of R+ . It ranges between 0.811 to 0.889 with an average 
of 0.858. Eq. (33) is also potted in Fig. 11 for comparison.  It is observed 
that Eq. (33) is a good approximation of the quantity, / cV U+ + .  

 

 

Fig. 11 
Variation of the quantity, ++

cUV / . 

Substituting Eq. (20) in Eq. (23) 

 ( )( )
2

1 1

1 1

2
1 1 2c c

m nV V
U n nU

+

+= =
+ +

 … (34) 

The ratio / cV U+ + can be determined from the knowledge of m1 and n1. 
Variation of n1 obtained from two set of data, are such that it is very 
difficult to express it in a functional form (Fig.9).   
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Considering power law ( ) 21// / n
cu U y R=  

 ( )( )
2

2

2 2

2
1 1 2c c

nV V
U n nU

+

+= =
+ +

 … (35) 

Like 1n , variation of 2n obtained from two set of data are such that it is 
very difficult to express it in a functional form (Fig.9).  

Location of velocity equals to the average velocity : 
Position of the velocity equals to the average velocity can be 

determined equating +u to +V  and solving the resultant equation.  
Considering the Coles log-wake law and value of κ  and Π  as per MK, the 
position  

/ / 0.2419y R y Rη + += = =  

Similarly the positions can be determined considering other velocity 
distribution. For simplified wake law 0.2411η =  while it is same as

0.2411η =  for Lewkowicz20 law and for Jones 21 law 0.2350η = . 

Friction factor : 
Darcy-Weisbach friction factor for smooth pipe can be written as 

( )
2

2
*

2

/ 881
2

dp dx D vf
V VVρ

+
−  = = =  

 … (36a) 

2 2
* *

2 2 2 2

8 8 4 4 41 1
2 2

wH
f

gR S v vf C
V V V V

τρ

ρ ρ
= = = = =  … (36b)  

( )
( )

222 2 2 2
** *

2 2 2 2 2
//8 32 32 32

4 / 2 /

Rvv R v Rf
ReV V R VR

νν
ν ν

+ 
= = = =   

 … (36c) 

where /dp dx is the pressure drop per unit length, g is gravitational constant 
for acceleration, S is slope, shear velocity * Hv gR S= /wτ ρ= , wτ  is 
shear stress at the wall and fC is coefficient of skin friction, the pipe 
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diameter RD 2= , hydraulic radius HR = /A P , A is cross sectional area and 
P is wetted perimeter.  

Re 2RV / ν=  can be obtained substituting expression for +u in Eq. (24) 
or it can be obtained from the derived relation for average velocity V. 
Consequently, from Eq. (36) friction factor can be obtained. This is to note 
that different profiles will lead to different expressions for friction factor.  

Considering log-wake law, Eq. (9) and using Eq. (24) and Eq. (36) 
friction factor can be computed as  

 
( ) 2

1 1 1 3 4ln ln 32
28

Re f B
f κ κ κ κπ

Π Π = − + + − −  
 … (37a) 

substituting the value of κ , ,B  and κ/2Π as per MK 

  ( )1 1 934log 0 609. Re f .
f

= − , 2 0.99890r =  … (37b) 

Equation (37b) is compared with the  data of MK, HK and Swanson et 
al.22 (denoted SN) (SN data tabulated in McKeon et al.23). Coefficient of 
determination is noted at the right side of the equation.  

If wake is neglected ( )0Π = , the Eq. (37b) reduces to  

 ( )1 1 934 log 0 735. Re f .
f

= − , 2 0.99896r =  … (38) 

Prandtl considered logarithmic law (without wake) with 0.41κ =  and
5B = and obtained the relation   

( )1 1 99 log 1 02. Re f .
f

= −  … (39) 

Equation (39) produces high correlation with data of MK and HK,
2 0.99894r = . 
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Prandtl adjusted his theoretical equation with the help of the 
experimental data of Nikudarse. The adjusted equation is given below with 
correlation to the data of MK and HK 

 ( )1 2 0 log 0 8. Re f .
f

= − , 2 0.99898r =  … (40) 

Similarly the friction factors f are obtained from other laws (using 
constants as per MK)  

Simplified log-wake law: 

 ( )1 1 1 3 3ln ln 32
5 28

Re f B
f κ κ κ

Π = − + + −  
 … (41a) 

 ( )1 1.934log 0.608Re f
f

= − , 99890.02 =r  … (41b)  

Lewkowicz20  law : same as simplified log-wake law 

Jones21 wake law: 

 ( )1 1 1 3 23ln ln 32
5 158

Re f B
f κ κ κ

Π = − + + −  
 … (42a) 

( )1 1 934log 0 636. Re f .
f

= − , 99891.02 =r  … (42b) 

It is revealed from the above that theoretical deduction (39) considering 
logarithmic law only gives high correlation with the data though is 
logarithmic law is not a good approximation of velocity profile in 
comparison to different log-wake laws. It can be explained in this way that 
logarithmic law overestimates velocity profiles at viscous region and 
underestimates velocity profile at the outer region and in the process of 
determining of average velocity, effect of overestimation of velocity at 
viscous region is neutralized to some extent by the effect of under 
estimation velocity at the outer region.  This is the probable reason of high 
correlation.  
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Friction factor considering viscous correction : 

Integration of the log-wake law overestimates the average velocity 
because log-wake law overestimates velocity at viscous region. 
Consequently, there must be  some contribution of this excess average 
velocity to friction factor. McKeon, et al.24 proposed addition of the 
following viscous correction to friction factor relation    

  
( )0 55

19 9
.

.C
Re f

= −  

Combining Eq. (37b) and viscous correction  

( ) ( )0 55
1 19 91 934log 0 609 .

.. Re f .
f Re f

= − − , 2 0.99874r =  … (43) 

There is high correlation between Eq. (43) the data of MK and HK. 2r is 
given at the right side of the equation. Viscous correction does not improve 
the relation. It lowers coefficient of determination slightly. Two theoretical 
relations are compared with data of MK, HK and SN in Fig. 12. At higher 
Reynolds Number, two relations coincide each other.   

 
 
 
 
 
 
 
 
 
 

 
Fig. 12 

Theoretical friction factor relations compared with experimental data.  
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Relation between centerline velocity and friction  : 

Analyzing MK data, Mazumdar and Mandal15 established relation 
between cU + and R+ as 2.345ln 7.157cU R+ += + , 2 0.9995r = .  

Considering both MK and HK data, the relation between +
cU and +R

has the form  

 2.352ln 7.130cU R+ += + , 2 0.9978r =  … (44)  

Coles law, Simplified law, and Lewkowicz law lead to Eq. (15) for 
centerline velocity. Centerline velocity obtained from Jones law 

1 1ln 2 2.375ln 6.077
3cU R B R

κ κ κ
+ + +Π= + − + = +  … (45)  

It is observed that Eq. (15) is very close to Eq. (44) while Equation (45) 
underestimates the centerline velocity.  

 As the centerline velocity cU + is a function of R+ and 
32R Re f /+ = , the centerline velocity can be related to friction factor. 

One obtains from Eq. 15 (which is based on Coles log-wake law)   

 ( )5.469log 2.684cU Re f+ = +  … (46) 

The following relation is obtained using Eq. (45) which is based on 
Jones law:  

 ( )5 469 log 1 892cU . Re f .+ = +  … (47) 

The two relations are compared with data in Fig. 13. It can be seen from 
the Fig. 13 that theoretical relation between centre line velocity and friction 
factor obtained from Jones21 law underestimate the experimental data. It is 
due to underestimation of centerline velocity by the Jones law21.  
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Fig. 13  
Theoretical relation ( ) vs. cU Re f+ compared with data.  

Conclusion 

All the three power laws produce coefficient of determination greater 
than 0 9000. for high Reynolds Number. Power law constant 1m  slowly 
decreases with Re. It varies within a small range from  1 01.  to 1.23 with an 
average value of 1.06. The constant 1n  ranges from 3.74 to 11.30 with an 
average value of 7.89. It increases with Re. 1n Re− relation shows no 
definite trend.  Constant 3m , 2n  and 3n  are increasing function of Re but 
the relations exhibit no definite trend. 3m  ranges between 4.07 and 11.97 
with an average value 8.80,  average value of 2n is 8.46 with maximum and 
minimum value of 11.74 and 4.59 while 3n  ranges between 3.74 to 11.30 
with an average value of 7.78.  

For turbulent pipe flow, the quantity ( )cU V+ +−
 

has a constant 
numerical value. Different log-wake laws yield different values of the 
quantity which ranges from 3 690.  to 4 406. . 

All the theoretical relations for friction factor derived from different 
log-wake laws give high correlation ( )2 0 99890 0 99891= −r . .  to the data. 
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Prandtl’s adjusted equation gives highest correlation, 2 0.99898r = . It is 
observed the introduction of viscous correction due to McKeon et al.24 does 
not improve friction factor relation. The average velocity is located at non-
dimensional height 0 2350y / R y / R .+ += =   to 0 2419.  from the pipe wall. 
This can be used to determine average velocity for smooth pipe flow from 
single measurement.  
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[Abstract: In this work, ground state of a generalised alternating one dimensional 

superlattice  has been studied. The changes in the system property with the changes in the 
values of site potential and on-site Coulomb repulsion are shown. A self consistent Hartree 
Fock Approximation calculation is done for this purpose. Studying order parameters of the 
system, possible phase transition points are found out. ] 
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1. Introduction 

Owing to the tremendous success in developing different types of low 
dimensional metallic multilayered structures e.g. latered Fe/Cr structures1,3, 
theoretical study of superlattices is of great importance. Some theoretical 
and experimental works have been done in this field1–12. In the present work 
I have studied the ground state of a half-filled one dimensional superlattice 
with unit cell size two. Investigating the order parameters for a range of 
values of Coulomb repulsion energy and site potential, ground state phase 
diagram of the system has been drawn. 

2. The model and the method 

We have modelled the superlattice as a modified Hubbard model with 
two different values of the site potentials Aε , Bε  and the on-site Coulomb 
repulsion energies AU , BU  at the adjacent sites. Previous works on this type 
of models considered either variations in site potentials or variations in 
Coulomb repulsion energies. Here is the generalised case where wide range 
of variations of the both are considered. Scale of energy is chosen by setting 
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t = 1.0. For this study we have used the Hartree Fock Approximations 
(HFA). Though it is an approximation method, it is now well known that in 
the weak to moderate coupling regime this method works very well11. 

 

 

Figure 1 

Superlattice chain with two sublattices 

The model Hamiltonian is 

1A i B i i , i , A Bi ii i
i A i B i, i A i B

H n n t ( c c h.c.) U n n U n nσ σ
σ

ε ε +
+ ↓ ↓↑ ↑

∈ ∈ ∈ ∈
= + + + + +∑ ∑ ∑ ∑ ∑

 
… (1) 

U and ε denote on-site Coulomb repulsion energies and site potentials 
respectively; subscripts indicate the sublattices. In this paper the half-filled 
band is studied and only the nearest neighbour hopping is considered.  

In the Hartree-Fock Approximation, the Coulomb terms is substituted 
in the following way ),( BA=α . 

↓↑↓↑↓↑↓↑ −+→ iiiiiiii nnUnnUnnUnnU αααα  … (2) 

Now the up and the down-spin terms in the Hamiltonian are decoupled. 
In an unrestricted HFA Hamiltonians can be diagonalised in a self-
consistent manner to obtain the single particle energy levels. The ground 
state is constructed by filling up the energy levels of both the up and the 
down bands upto the Fermi level. 
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The ground state properties of these systems can be well-understood 
from the charge and the spin density order parameters (c and s respectively). 
For half-filled chain with periodic boundary condition, 

1
2 B AB Ac n n n n↓ ↓↑ ↑= + − −   … (3) 

1
2 B AB As n n n n↓ ↓↑ ↑= − − +   … (4) 

If ‘c’ is greater than ‘s’ the system is charge ordered or in other words 
charge density wave (CDW) is formed within the lattice. Otherwise, if ‘s’ 
dominates the system is spin ordered or in other words a spin density wave 
(SDW) is formed. 

3. The Result 

At first consider the case with 0.2=AU  and 0.0=BU  with
0.0== BA εε  the lattice shows charge ordering11. If Aε is kept fixed at 1.0 it 

will remain charge ordered, double occupancy at B sites being preferred. 
Now varying Bε from 0.0 to a high value, it is clearly seen that charge order 
parameter c dominates for all values of Bε , except 2.0, where spin order 
parameter dominates (figure  2).  

For 0.2== BA UU  and zero site potentials, it is a perfect spin ordered 
phase11. If Aε is changed to  1.0, the lattice is charge ordered. For variation 
of Bε from 0.0 to a high value, plots of order parameters (figure 2) show 
chargeordering for 4.0<Bε  and 6.1>Bε . For intermediate values of Bε  
the lattice is spin ordered. 

Next for the case with 0.2=AU , 5.1=BU , 0.1=Bε spin order 
parameter dominates only  for 3.13.0 << Aε  (figure  2). For other values of 

Aε  the system is charge ordered. 
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Figure 2 

Plots of charge order parameter c (red) and spin order parameter s (blue) with site 
potentials for N = 100. Values of other parameters are shown on diagram. Scale of energy is 
chosen by setting t = 1.0. 
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Figure 3 shows the variation of order parameters with BU  keeping other 
parameters fixed. From the plots we can have idea of ordering within the 
lattice. 

 
Figure 3 

Plots of charge order parameter c (red) and spin order parameter s (blue) with BU  
for N = 100. Values of other parameters are shown on diagram. Scale of energy is chosen 
by setting t = 1.0. 
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Having knowledge of the transition points from the order parameter 
values, phase diagrams for the superlattices are constructed.  Various types 
of phase diagrams are possible. In figure 4, BU and Aε are kept fixed. 
Studying the order parameters with the variations of )( UU A =  and )( εε =B

regions of charge ordering and spin ordering are located. In the figure 5, AU  
and Aε  are kept fixed. )( UU B = and )( εε =B are varied to study the system. 
Different phases are clear from the diagram. 
 

 
Figure 4 

The HFA phase diagram in the ( )AU U=  – ( )Bε ε=  plane with 0 0BU .=  
and 0 0A .ε =  Scale of energy is chosen by setting t = 1.0. 

 
Figure 5 

The HFA phase diagram in the ( )BU U=  – ( )Bε ε= plane with 2 0AU .=  
and 1 0A .ε =  Scale of energy is chosen by setting t = 1.0. 
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3. Conclusion 

Most of the previous works on alternating superlattice models 
considered a limited ranges of the parameters AU , BU , Aε  and Bε . In this 
work, many possible combinations of AU , BU , Aε and Bε have been 
studied. Convergence of the results with system size has been checked. The 
phase diagrams show two transition lines, separating a spin ordered region 
(SDW) and two charge ordered regions (CDW). This model can be further 
explored for finite temperatures and for different fillings. Till now there is 
no experimental work with these wide ranges of variations of the 
parameters. The results obtained in this work indicate that it would be an 
interesting experimental study. 
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[Abstract: In this paper we study non-ohmic behavior of doped silicon and 

germanium using a hotelectron model, which is motivated by the hot-electron effect in 
metals at low temperatures. This model assumes that the thermal coupling between 
electrons  and lattice at low temperatures is weaker than the coupling between electrons, so 
that the electric  power applied to the electrons  raises them to a higher  temperature than 
the lattice. Although this model seems not suitable for semiconductors in the variable 
range-hopping regime, where the electrons are localized, it fits quite well the experimental 
data. To determine whether the hot-electron model in doped semiconductor is just an 
alternative  way to parameterize the data or has some physical validity, we investigated the 
noise and the frequency dependence of the impedance of doped silicon thermistors that are 
used for low temperature thermal X-ray detectors. The measured excess white noise at low 
frequencies is consistent with the predicted thermodynamic fluctuations of energy between 
electron and phonon systems. The non-ohmic behavior shows a characteristic time that can 
be interpreted as a C/G time constant in the hot-electron model. By measuring this time 
constant, we get a hot-electron heat capacity C that agrees with the measured excess heat 
capacity of the implants. These support the assumption of a hot-electron system thermally 
separated from the lattice system.] 

1. Introduction 

Non-Ohmic effects of ion-implanted silicon thermistors can be well 
described by the “hot-electron” model1,9,10, where it is assumed that the 
resistance depends only on the temperature of the electrons, but there is a 
thermal resistance between the electrons and the crystal lattice through 
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which the bias power must flow, increasing the temperature of the electrons 
above the temperature of the lattice, and therefore reducing the thermistor 
resistance.  

Figure 1 shows the resistance of a thermistor as a function of the Joule 
power for different phonon (lattice) temperatures ranging from 50 mK to 
150 mK. The lines are the result of a fit to the hot-electron model, with a 
power-law dependence of thermal conductivity on temperature. The hot-
electron model seems to fit very well and the parameters derived are in good 
agreement with the previous results1,3,5. 

 
 

Figure 1  
The resistance-vs.-Joule power plot of a silicon thermistor, with the lattice 

temperature ranging from 50 mK to 150 mK. Each curve is the result of the fit to the hot-
electron model at the corresponding electron temperature. 

Hot-electron effects are well-understood in metals4-8, but in hopping 
semiconductors the electrons are expected to be localized in the lattice and 
therefore the theory does not predict any hot-electron behavior. In order to 
find out whether the hot-electron effect is physical in doped semiconductors, 
despite the theoretical predictions, we studied other effects that it would 
generate. The study of the excess noise and the frequency-dependence of the 
non-linear effects of the silicon thermistors give us more experimental 
supports to the physical validity of this model. The devices that we tested 
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have a wide variety of dimensions, with thickness of either about 1.5 µm or 
0.3 µm, areas between 2.5×10-5 cm2 and 1.6×10-3 cm2, and geometries 
between 1×36 and 36×1. 

2. Interpreting the excess white noise 

The hot-electron model can be used to explain the excess white noise 
that we measured in implanted silicon thermistors. 

During the characterization of thick silicon thermistors, we measured 
the noise between 3 Hz and 30 kHz on devices in strong thermal connection 
with the cold plate of the refrigerator (i.e. the devices were not suspended 
and the chip they were mounted on was glued to the cold plate) under 
different bias conditions. The phonon noise due to thermal fluctuation 
between the devices and the heat sink is expected to be negligible due to the 
strong thermal link. The only appreciable noise contribution expected was 
Johnson noise, but we found that, for bias currents greater than zero, the 
devices produce an excess noise. This excess noise is flat at low frequencies 
and has a roll-off at about 500-5,000 Hz due to the stray capacitance of the 
FET readout electronics. 

We then tried to explain this excess noise in the context of the hot-
electron model. If the electrons and phonons are really two separate systems 
connected through a thermal conductivity Ge-ph, we expect, in addition to the 
Johnson noise, to see the noise due to thermal fluctuations between the two 
systems2,3. 

Figure 2 (left) shows the measured excess noise as a function of the 
expected phonon noise due to the thermal link between electrons and 
phonons. In the calculations, for the value of the thermal conductivity we 
used the value obtained from the fit of the resistance-vs.-power plot. The 
plot shows a strong correlation between the observed excess noise and the 
expected thermal noise, with a linearly fit with a slope of nearly 1. This 
strongly supports the idea that the excess noise is due to thermal fluctuations 
between electrons and phonons, and that the hot electron model may be 
something more than just a good empirical way to explain the non-ohmic 
behavior of semiconductor thermistors. 
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We also considered the possibility that only Johnson noise exists and 
that the excess noise is due to an underestimate of it. If this were the case, 
there should be a systematic error apparent in our measurements, and the 
excess noise should scale with the expected Johnson noise. To make sure 
that this is not the case, we made a plot of excess noise vs. expected Johnson 
noise in figure 2 (right). In this plot, the data points are widely scattered, and 
cannot be reasonably fitted in any way. Therefore, the apparent excess noise 
doesn’t seem to be related in any way to the Johnson noise. 

 
Figure 2 

The left figure shows the good fit of the measured excess white noise to the expected 
thermal noise from the hot-electron model. The data are taken from several deep-implanted 
samples. The right figure shows that the excess white noise is not linear with the Johnson 
noise, thus makes sure that it is not due to an underestimate of the Johnson noise. 

3. Heat capacity of the hot-electron system 

Assuming that the hot-electron model describes a real physical property 
of silicon thermistors, we considered other effects predicted by this model 
and tried to experimentally see them. In particular, if the electrons constitute 
a separate system, we expect them to have a heat capacity Ce greater than 
zero. This heat capacity combines with the thermal conductivity Ge-ph, and 
should show up as a characteristic time constant in the resistance non-
linearity with a value equal to Ce/ Ge-ph. 

We therefore measured the dynamic impedance Z(w)2 of different 
thermistors under several bias conditions. Since these devices are in strong 
thermal contact with the heat sink, the time constant between the thermistors 
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and the heat sink should be zero, and any time constant characterizing Z(w) 
must come from the hot-electron system. Fitting the measured dynamic 
impedance we obtain, in fact, a time constant Ce/Ge-ph that is different from 
zero, which implies that there is a heat capacity, or something that behaves 
like a heat capacity associated with the hot-electron system. Moreover, we 
estimate the value of the heat capacity Ce using the Ge-ph obtained through 
the resistance-vs.-power curves. 

Figure 3 shows the plot of Ce vs. electron temperature. The data from 
different thermistors and under different bias conditions seem to be 
consistent to each other, with a power-law dependence on the temperature 
that has an index smaller than one. 

 

 
Figure 3 

The hot-electron heat capacity obtained from the measured characteristic time C/G and 
the heat conductance G. The data show a power-law dependent on the electron temperature 
and a good agreement with the measured thermistors excess heat capacity. 

The error bars are mainly due to stray capacitances in the electrical 
circuit that limit the accuracy in the measurement of the time constant. The 
results are in good agreement with the measured total excess heat capacity 
associated with the thermistor (shown in figure 3). Those values were 
obtained by taking the difference of the total heat capacity of two detectors 
that were identical except for an extra thermistor implant on one of them. 
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[Abstract: In this paper the influence of thermal radiation, suction/blowing 
parameter, and chemical reaction parameter on heat and mass transfer  properties past a non 
linearly stretching sheet subjected to steady 2-D magnetohydrodynamic fluid flow through 
porous medium are studied. The governing 2-D boundary-layer partial differential 
equations are transferred to ordinary differential equations containing radiation parameter, 
permeable parameter, chemical reaction parameter, suction/blowing parameter, magnetic 
field parameter, Prandtl number, and Schmidt number. These equations are solved 
numerically by shooting method with fourth-fifth-order Runge-Kutta integration technique. 
The effects of the governing parameters on velocity, temperature and concentration are 
plotted and discussed in details.] 

Keywords: Thermal radiation; MHD; Suction/blowing parameter; Chemical reaction; 
Non-linear stretching surface 

1. Introduction 
The study of flow and heat transfer induced by a stretched surface is 
important in many industrial processes e.g., in the manufacture and drawing 
of rubber sheets, plastics, glass-fiber, paper production, metal processes, 
polymer extrusion processes, crystal growing, cooling of metallic sheets in a 
cooling bath and many others. Sakiadis

1-3
 have studied the boundary-layer 

behavior on continuous solid surfaces. Gurubka and Bobba
4
 have studied  

heat transfer effects on a continuous stretching surface with variable 
temperature. Fluid flow past a stretching sheet has been presented by 
Kumaran  and  Ramnath5.  The  flow of a fluid past a nonlinearly  stretching 
sheet has studied by Vajravelu6. Heat and mass transfer on a stretching sheet 
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 have analyzed by Elbashbeshy7. Vajravelu and Cannon8 have studied the 
flow of fluid past a nonlinearly stretching sheet. An analysis of viscous flow 
and heat transfer on a nonlinearly stretching surface in the presence of 
various parameters has been presented by Coretell9-11. Hayat, et al.12 have 
studied mixed convection flow on a nonlinearly stretching sheet. An MHD 
flow past a nonlinear stretching sheet has been studied by Hayat, et al.13. 
The fluid flow and heat transfer past a non-linearly stretching surface has 
been investigated by Cortell14. Shahzad and Khan15 have presented an exact 
solution for the radiative flow and heat transfer past a nonlinear stretching 
sheet. Mukhopadhyay16 have presented a study of a boundary layer flow 
past a nonlinearly stretching sheet with partial slip. Ferdows, et al.17 have 
studied MHD radiative boundary layer natural convection flow and heat 
mass transfer over a nonlinearly stretching sheet. Rashidi, et. al.18 have 
analyzed natural convection heat and mass transfer for MHD radiative fluid 
flow past a vertical stretching sheet with buoyancy effects. Cortell19 have 
studied MHD radiative visco-elastic fluid flow past a stretching surface in 
the presence of heat absorption/generation. 

The analysis of flow and heat mass transfer with MHD has considerable 
theoretical and practical importance because the boundary layer flow can be 
controlled by the magnetic field. MHD flow has widespread application in 
the field of engineering, e.g., nuclear reactors, MHD generators, polymer 
technology, metallurgy, and plasma studies etc. The analysis of 
Magnetohydrodynamic fluid flow in porous medium is of considerable 
attention in industry and environment. Some of the applications are flow of 
ground water through soil and rocks (porous medium), extraction of oil and 
natural gas from rocks, functioning of tissues in body (bone, cartilage, and 
muscle etc. being porous media) and flow of blood through them, and 
understanding various medical conditions (such as tumor growth, a 
formation of porous medium) and their treatment (such as injection, a flow 
through porous media) in medical science. The analysis of 
Magnetohydrodynamic fluid flow in porous medium under various 
conditions have been presented by (Varshney20; Vajravelu and Rollins21; 
Afify22; Fang, et. al.23; Javed, et. al.24; Noor et al.25; Motsa and Sibanda26; 
Abbasbandy, et. al.27; Kumar28; Fadzilah, et. al.29. Thermal radiation has 
important applications in the processes involving high temperatures and 
space technology. 



 RADIATIVE FLUID FLOW OVER A NON-LINEARLY STRETCHING ETC. 69 

Recently developments in hypersonic flights, space vehicles, gas 
turbines, nuclear power plants and gas cooled nuclear reactors have attracted 
researcher in this area. Several researchers investigated thermal radiation as 
a mode of heat transfer. Cortell30 have studied thermal boundary flow past a 
non-linearly stretching surface with radiation and dissipation. Sajid and 
Hayat31 have investigated the thermal radiation effect on the boundary layer 
flow over a stretching surface. An MHD radiative natural convective flow 
has been investigated by Chen32. The effects of thermal radiation on fluid 
flow and heat transfer under various conditions have been presented by 
(Pal33; Ishak, et. al.34; Prasad, et. al.35. 

The analysis of heat and mass transfer with chemical reaction is very 
important due to its applications in engineering and science. The study of 
mass transfer effects with chemical reaction is useful in chemical processing 
equipments. Such study is important in electromagnetic propulsion, 
movement of biological fluids, construction and food engineering, chemical 
process industries. Chemically reacting fluids have many technological 
applications ranging from the formation of thin films for, biological 
systems, combustion reactions, catalysis, and electronics etc. Chamkha36 
have studied MHD flow past a stretched vertical sheet with the chemical 
reaction and heat generation/absorption. Afify37 have investigated MHD free 
convection flow and mass transfer over a stretching sheet with chemical 
reaction. The influence of thermophoresis on MHD mixed convection heat 
and mass transfer through a porous wedge with variable viscosity and 
chemical reaction has been investigated by Kandasamy, et. al38. The effect 
of chemical on heat and mass transfer under various conditions have been 
presented by (Bhattacharyya and Layek39; Rashad and El-Kabeir40; Afify 
and Elgazery41. 

2. Formulation of the problem 

Consider a steady, radiative, MHD motion of a viscous fluid past a non-
linear stretching sheet immersed in a porous medium. The first order 
chemical reaction is included in the concentration equation, taking the 
coordinate axes x - and y - along and perpendicular to the sheet respectively. 
A variable magnetic field B(x) is applied normally to the sheet. In the 
direction of x - axis the two forces which are equal in magnitude but 
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opposite in direction are applied, thus the sheet is stretched keeping the 
origin fixed. We assume that the flow is electrically conducting and the 
effects of the persuaded magnetic field and electric field are ignored. 

Therefore, under such assumptions, governing equations for the flow 
relevant to the problem are: 

 
... (1)

 

 
… (2)

 

 
… (3)

 

 
… (4)

 

The strength of the variable magnetic field B(x) is assumed as  
B(x ) = B0x –2 / 3 

The relevant boundary conditions are 

 

 

  

 
… (5)

 
Rosseland’s approximation is used for radiative heat flux which is 

given below (Cortell10):  

 
... (6)
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We now introduce the following similarity transformations and 
dimensionless parameters: 

   

 

 

 

  

 

 

 

 
… (7)

 

Now using equation (6) and (7) the mass conservation equation (1) is 
identically satisfied, and substituting into equation (2), (3) and (4), we get 

 ... (8) 

 ... (9) 

 ... (10) 
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By considering m3 = 0, G1 = Tw – T∞ and H1 = Cw – C∞ the boundary 
conditions5 become 

  

 ... (11) 
 
where    (suction/blowing parameter). 

3.Numerical solutions 

The equations (8), (9) and (10) are solved numerically with the boundary 
conditions (11) by applying 4th order Runge-Kutta method along with 
shooting technique. We first reduce the equations (8), (9) and (10), into first 
order differential equations, by using 

 
Thus we get 

 

 

 

 

 

 ... (12) 
Subject to the following initial conditions 

S1 = – S, S2 = 1, S3 = u1, S4 = 1, S5 = u1, S6 = 1, S7 = u3 … (13) 
The equations (12) and (13) solved numerically by utilizing 4th order 

Runge-Kutta method along with shooting technique. In equation (13) u1 , u2  
and u3 are unidentified to be resolute as the part of numerical solution and 
the results are illustrated numerically and graphically.  
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From the equations (7) and (11) the shearing stress at the stretched 
surface is derived below: 

 
... (14)

 
From the equations (6) and (11) the heat flux in expressions of Nusselt 

number at the surface is derived below : 

 
... (15)

 
If m3 = –2/3, then equation (15), reduces to 

 
... (16)

 
The nusselt number is given by 

 
... (17)

 
From Eq. (11), (16) and (17), we obtain 

 
... (18)

 
The local Reynolds number can be obtained as 

 
... (19)

 
From equations (18) and (19), we obtain 

 
... (20)

 
From the equations (6) and (11), the mass flux in expressions of 

Sherwood number is derived below: 

 
... (21)
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If m3 = –2/3, then equation (21), reduces to 

 
... (22)

 
The Sherwood number can be obtained as 

 
... (23)

 
From equations (11), (21) and (23), we obtain 

 
... (24)

 
The local Reynolds number can be obtained as 

 
... (25)

 
From the equations (24) and (25), we get 

 
... (26)

 
4. Results and Discussion 

In order to study the nature of the velocity, heat and mass transfer, shear 
stress and rate of heat and mass transfer, numerical calculations are carried 
out for distinct values of  and Sc which are listed in 
figures and the results are reported graphically. 

Figures 1 to 3 illustrate the influences of the Hartmann number, porosity 
parameter and blowing/suction parameter on the fluid velocity. We observe 
that velocity decelerate with the growing value of porosity parameter, 
Hartmann number and suction parameter while it enhances as blowing 
parameter increases because the presence of  and a(<0) decelerate the 
thickness of the momentum boundary layer while it is enhanced in the case 
of blowing parameter. The influences of the Hartmann number, porosity 
parameter and blowing/suction parameter on the temperature profile are 
shown in figures 4 to 6. We observe that temperature enhances with the 
growing value of blowing parameter while the reverse trend is seen for 
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Hartmann number, porosity parameter and suction parameter because the 
presence of  and a(<0) decelerate the thickness of the thermal 
boundary layer while it is enhanced in the case of blowing parameter. 

Figures 7 and 8 shows the effects of radiation parameter and 
blowing/suction parameter on the temperature at m3 = 0. We observe that, 
when the value of the wall temperature parameter is zero, the occurrence of 
radiation parameter increases the temperature profiles. Furthermore, in the 
case of blowing parameter (a = 0.5), we found significant differences in 
temperature profile. Figure 9 presented the effects of radiation parameter 
and wall temperature parameter on the temperature profile at a = 0 
(impermeable surface). We noticed that the temperature profile diminish 
with the increasing value of radiation parameter. Furthermore, the 
temperature profiles decreases with the growing value of wall temperature 
parameter. The reason is that the radiation parameter and wall temperature 
parameter depress the thickness of the thermal boundary layer. The 
influences of Schmidt number and chemical reaction parameter on the 
concentration profile presented in figures 10 and 11. We noticed that the 
concentration profile depress with the growing value of Schmidt number 
and chemical reaction parameter. From figure 12 it is noticed that the 
magnitude of  being larger for the growing value of blowing parameter 
while opposite trend is found for the suction parameter. From figures 13 and 
14 it is noticed that the magnitude of – θ ''(0) is larger for the growing value 
of radiation parameter and wall temperature parameter. The magnitude of  is 
higher for the growing value of the wall temperature parameter as seen in 
figure 15. 

  
 Figure 1  Figure 2 
 Velocity profiles for various Velocity profiles for various values 
 Hartmann number. of porosity parameter. 
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 Figure 3  Figure 4 
 Velocity profiles for various values of Temperature profiles for various 
 blowing/suction parameter. values of Hartmann number. 

 

 
 Figure 5  Figure 6 
 Temperature profiles for various Temperature profiles for various values 
 values of porosity parameter. of blowing/suction parameter. 

 

 
 Figure 7  Figure 8 
 Temperature profiles for radiation Temperature profiles for radiation parameter 
 Parameter and blowing parameter when and suction parameter when m3=0 and with 
 m3=0 and with (nr =1) and without (k2=1) (nr =1) and without (k2=1) radiation effect. 
              radiation effect. 
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 Figure 9 Figure 10 
 Temperature profiles for various values Concentration profiles for various  
 of  Wall temperature parameter and  values  of Schmidt number. 
 Radiation parameter. 

 

 
 Figure 11 Figure 12 
 Concentration profiles for various values Variation of f ' (0) with M for different 
 of chemical reaction parameter. values of blowing/suction parameter. 
 

 
 Figure 13 Figure 14 
 Variation of  with Pr for different  Variation of  with Pr for different 
 values of radiation parameter. values of wall temperature parameter. 



78 PRADIP KUMAR GAUR, RAM PRAKASH SHARMA & ABHAY KUMAR JHA 

 
 

Figure 15 
Variation of  with Sc for different values 

of wall temperature parameter. 

5. Conclusions 
The conclusions of the research paper are as follows: 
  Improving values of M results in detraction of velocity profiles, whereas 

reverse trend exhibited for increasing values of a and S. 
  Improving values of S and NR results in detraction of the temperature 

profile, whereas reverse trend exhibited for increasing values of M and a. 
  Improving values of S and Sc results in detraction of concentration 

profile. 
  An increase in a results in growing values of shearing stress, whereas the 

reverse happens to rising values of S and M. 
  Increasing values of NR, a and Pr drops the values of the rate of heat 

transfer. 
  Increasing values a and Sh drops the values of rate of mass transfer 

while the reverse happens to the increasing value of m3. 
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