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Evidence of multifractality of the pion production 
process at 60 GeV/n 

Md. Abdul Kayum Jafry, 
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412/1 G.T. Road (South), Howrah-711102, India 
e-mail: akjafry@yahoo.com 

Dipak Ghosh  and Argha Deb 
Nuclear and Particle Physics Research Centre, Department of Physics,  

Jadavpur University, Kolkata-700 032, India 

[Abstract : To study the dynamical fluctuation of pions produced in 60 GeV/n  
16O–AgBr interaction in η and  φ  space, we have used Gq moment, which can suppress the 
statistical noise. In both  η and  φ   spaces fractal nature has been observed which is of 
dynamical origin.] 

Keywords: Heavy ion interactions, produced particles, mutifractality.  
PACS: 25.70 Pq, 24.60 Ky 

1. Introduction 
Non-statistical fluctuations in high energy collisions have been 

observed with much attention to understand the multi-particle production 
mechanism1-4. Bialas and Peschanski5, 6 observed a power law dependence 
of the normalized factorial moments of the multiplicity distribution on the 
rapidity bin-width. Such a power law dependence of the normalized 
factorial moments is a signature of self-similarity in the fluctuation pattern 
of multi-particle production. It has been suggested that the probability 
distribution of the particle density has fractal properties7. Different methods 
have been proposed for studying the fractal structures in multi-particle  
data8-12. Hwa proposed10, 11 an approach in terms of Gq moments, which can 
reveal the multi-fractal structure of the particle spectra. But for low 
multiplicity events, the fractal moments Gq are dominated by statistical  
noise. In order to suppress statistical noise, Hwa Pan12 modified the 
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definetion of Gq moments, by introducing a step function which can act as a 
filter for the low multiplicity events. 

The motivation of this paper is to investigate the fractal behavior of 
multiplicity fluctuations in 16O–AgBr interactions in both pseudo-rapidity 
and azimuthal dimensions using the modified definition of the Gq 
moments12. We have studied the fractal indices as well as their dependence 
on the order of the moments. In this paper we report for the investigation of 
the fractal behavior in pseudo-rapidity as well as azimuth space.  
The relation between the fractal and intermittency indices has also been 
studied. In order to study this relation, we perform a multi-fractal analysis of 
the data using the noise suppressed Gq moments. It would be further 
interesting to investigate the intermittency in terms of multi-fractals, for this 
will provide another window to understand the dynamics of particle 
production process. 

2. Experimental Method 

The study was performed on pions produced in 16O–AgBr interactions 
at 60 GeV/n. The data sets used in this present analysis were obtained from 
Ilford G5 emulsion tracks exposed to 16O beam of energy 60 GeV/n at 
CERN SPS. A Leitz Metaloplan microscope with a 10x objective and 10x 
ocular lens provided with a semi-automatic scanning stage was used to scan 
the plates. Each plate was scanned by two independent observers to increase 
the scanning efficiency. The interactions have been selected after 1cm from 
the leading edge of the plate. The final measurements were done using an 
oil-immersion 100x objective. The measuring system fitted with it has  
1 µm resolution along the x and y axes and 0.5 µm resolutions along the z 
axis. Here the nuclear emulsion serves the purpose of target as well as 
detector. 

Our detector can resolve particles differing by 0.1 unit in 
pseudorapidity scale and about 50 in azimuthal angle space. It is worthwhile 
to mention that the emulsion technique possesses a very high spatial 
resolution which makes it a very effective detector for studying fluctuation 
phenomena. 
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After scanning, the events were chosen according to the following 
criteria : 
(i) The incident beam track should not exceed 30 from the main beam 

direction in the pellicle. It is done to ensure that we have taken the real 
projectile beam.  

(ii) Events showing interactions within 20 µm from the top or bottom 
surface of the pellicle were rejected. It is done to reduce the loss of 
tracks as well as to reduce the error in angle measurement.  

(iii) The selection of the primary interactions is made by following the 
incident beam track in the backward direction until it reaches the 
leading edge.  

According to the usual emulsion terminology13,  relativistic charged 
particles  with ionisation I ≤  1.4 I 0 , (I 0  being the minimum ionisation)  and 
velocity ≥ 0.7c, are termed as shower tracks. They are mostly pions. With 
the above selection criterion, we have chosen 250 events of 16O–AgBr 
interactions at 60 GeV/n for this analysis. 

The shower tracks are identified from each event and their emission 
angles θ with respect to the beam direction and azimuthal angle φ  
determined by measuring  the space co-ordinates (x,y,z) of a point on each 
shower track, the point of interaction and a point on the incident track. 
Pseudo-rapidity η of all shower particles were determined from measured 
space angle θ with reference to the beam by the relation η = – ln tan (θ/2). 
The average multiplicity of produced particles of the sample is 63.74 ± 2.3. 

3. Method of Analysis 

Let us consider a  pseudorapidity interval ∆η which is divided into M 
bins of size δη = ∆η/M. Let N be the total multiplicity in the considered  η 
interval, M be the number of bins into which the total interval has been 
divided and nm be the m-th bin multiplicity. The modified form of multi-
fractal multiplicity moments of order q suggested by Hwa and Pan12 is 
defined by  

     M 
  <Gq> = Σ (nm / N)q θ(nm –q)    … (1) 
   m=1 
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where θ (nm –q)   is the usual step function which is equal to 1 for nm ≥q and 
0 for nm < q. For very large multiplicity N/M >>q, the step function, as in the 
case of statistical system, is not essential and the two definitions coincide. 
But in the particle production phenomenon N is much less than M and the θ 
function exerts a crucial influence on the Gq moments.  

A self similar particle production process is characterized by a  power-
law behavior10,11 

           <Gq> ∝ M -τq …  (2) 
where τq are the fractal indices which can be obtained from the slope 

                            




 ><
=

)ln(
)(ln

M
MGq

q δ
δ

τ
           

… (3)
 

on a double logarithmic plot, after averaging over all events in the sample. 
For an ensemble of events, the averaging is done as, 

                 <Gq> = (1/Nev)  Σ Gq  … (4) 

where Nev is the total no. of events in the ensemble. 
       One of the most important aspects of multi-fractal analysis is the 
extraction of the generalized dimensions Dq. The generalized (Renyi) 
dimensions are given by 

                  Dq = [1/(q−1)] τq   … (5) 

If  Dq’ = Dq =1, it would indicate that the multi-particle spectrum does 
not have any fractal structure. For geometrically monofractal structure of 
multi-particle spectra Dq’ = Dq ≠1. On the other hand multi-fractality in the 
particle production process manifests itself as Dq’ > Dq  for q’ < q. 

We calculated the <Gq> moments using Eq. (1) and Eq. (4) for  
q = 2,3,…6 in the η and φ  interval. For the analysis we have considered the 
pseudo-rapidity interval ∆η = 4 around the peak of the distribution. For the 
φ  space we have used the total 2π interval. Fig.1(a) depicts the variation of  
ln <Gq> with ln(M) for the η interval and Fig.1(b) depicts the variation of  
ln <Gq> with ln(M) for the φ  interval. A linear dependence of  ln <Gq> on 
ln (M) is observed in both cases, which indicates self-similarity in the 
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particle production process. The exponent τq of the power law behaviour is 
obtained by curve fitting (least square fitting).  τq values for η and  φ  are 
presented in Table I and Table II respectively. 

 
Fig.1(a) 

Plot of ln< Gq > vs. ln(M) for q=2 to 6 in η interval. 

 
Fig.1(b) 

Plot of ln< Gq > vs. ln(M) for q = 2 to 6 in φ interval. 
(Symbols represent data, lines represent statistical noise;  

Error bars are not  shown to avoid clumsiness.) 
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Table I 
Parameters of Gq moment analysis for q = 2 to 6 in the pseudo rapidity 

interval. 

Q τq       τq
stat   τq

dyn       Dq
dyn   

2 0.788±0.004 0.836±0.006 0.952±0.007 0.952±0.007 
3 1.403±0.016 1.598±0.010 1.805±0.019 0.903±0.010 
4 1.862±0.039 2.279±0.024 2.582±0.046 0.861±0.015 
5 2.246±0.067 2.915±0.066 3.331±0.094 0.833±0.024 
6 2.618±0.094 3.559±0.117 4.059±0.150 0.812±0.030 

Table II 
Parameters of Gq moment analysis for q = 2 to 6 in the azimuthal interval. 

Q τq τq
stat τq

dyn Dq
dyn   

2 0.660±0.006 0.812±0.004 0.848±0.007 0.848±0.007 
3 1.091±0.012 1.563±0.009  1.527±0.015  0.764±0.008 
4 1.349±0.017 2.254±0.018 2.095±0.025 0.699±0.008 
5 1.522±0.025 2.885±0.046 2.637±0.052 0.659±0.013 
6 1.667±0.033 3.413±0.140 3.254±0.144 0.651±0.029 

To obtain the statistical noise contribution to <Gq>, N particles of each 
event are distributed randomly throughout the considered η and  φ  interval. 
The Gst

q value of each event is calculated with the redistributed particles and 
the average of Gst

q is obtained by using (4). The best fit curves are plotted in 
Fig.1(a) and Fig.1(b). The fitted slopes τst

q are listed in Table I and Table II. 
For q≥3, the <Gst

q> is much smaller than <Gq> in the best fit region, which 
reveals the dynamical effect prominently and thus demonstrates the 
superiority of the modified definition over the old definition. For q=2 and 3, 
there is no significant suppression of statistical fluctuations. So for both 
pseudo-rapidity and azimuthal intervals, the suppression of statistical noise 
is apparent from the figures for greater than three. 
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The dynamical contribution to the Gq moments can be expressed by14 

                    <Gq> 
dyn = [<Gq>/<Gq>st ] M(1-q) … (6) 

where <Gq>st  can be determined by distributing the N particles of an event 
randomly in ∆η. 

The dynamical contributions to the slope τq can be expressed by 

                   τq
dyn = τq− τst

q + q – 1 … (7) 

where the τst
q is the  statistical part of the slope.  

When < Gst
q> is equal to <Gq>, a trivial dynamical effect gives the 

result, 
                      <Gq> 

dyn =  M(1-q)       … (8) 

  Under such condition, 

                       τq
dyn =  q – 1 … (9) 

So any deviation of τq
dyn from (q – 1) indicates the presence of 

dynamical information. 
We have extracted the dynamical part of τq according to the formula 

(7) for q = 2 to 6 for both the cases of  η and  φ  . Table I and II contain the 
τq

dyn values in each case. In each case τq
dyn differs significantly from (q–1), 

indicating the dynamical origin of the observed fluctuation. 
We have calculated Dq

dyn [= τq
dyn / (q–1) ] from the values of τq

dyn for 
different orders and the values are shown in Table I ( for η space). We have 
also calculated Dq

dyn for FRITIOF data and are given in Table III. Dq
dyn for 

the FRITIOF events are almost equal to the topological dimension (Dq ≈ 1). 
But for the experimental events the deviation of Dq

dyn from the topological 
dimension is non-vanishing and non-trivial indicating the presence of 
fractality in the particle production process. Moreover, the dimension values 
decrease with order which is a hint of multi-fractal geometry. Similar results 
are obtained for φ  space also (Table II). 
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Table III 
Parameters of Gq moment analysis for q = 2 to 6 in the pseudo-rapidity 

interval for FRITIOF  data. 

q τq τq
stat τq

dyn       Dq
dyn   

2 0.845±0.005  0.850±0.006 0.995±0.006 0.995±0.007 

3 1.689±0.014 1.704±0.015 1.985±0.018 0.993±0.010 

4 2.547±0.035 2.563±0.025 2.984±0.042 0.995±0.016 

5 3.395±0.070 3.363±0.068  4.032±0.095  1.008±0.025 

6 4.108±0.096 4.469±0.114 4.638±0.155 0.928±0.032 

Simple intermittency analysis were performed by KLM15, HELIOS16, 
EMU0117, WA8018 on emulsion data at SPS energies. From intermittency 
exponents (αq) one can calculate the generalized dimension Dq [= 1– αq /  
(q–1)]12. Though calculated values of generalized dimensions are different 
from that of ours, all the data reveal hint of multi-fractality. The difference 
in values may be attributed to the different method of analysis.  
Mulifractality analysis was also performed recently by several scientists on 
emulsion data at SPS energies22-24. 

The self-similar property of multi-particle production at high energy 
can be investigated by factorial moments (Fq) and by fractal moments (Gq). 
It is natural to search for some correlation between the Gq moment and the 
Fq moment, thus providing a fractal interpretation for intermittency. The 
fractal index τq measures the strength of fractality, while the intermittency 
index αq is a measure of the strength of the intermittency. Thus, a 
correspondence between intermittency and multi-fractality can be obtained 
by relating the indices αq and τq . Since the deviation of αq from zero is a 
measure of dynamical fluctuation, it can be compared to the deviation of 
τq

dyn from (q–1). 
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Subtracting the statistical contribution from τq , Eq. (7) gives, 
 τq – τst

q = τq
dyn – q  + 1 ≈ – αq 

 i.e. αq ≈ q –1 – τq
dyn … (10) 

which can be directly compared to the slopes αq  obtained from the factorial 
moments12. 

The intermittency exponents αq for order q = 2 to 6 in the pseudo-
rapidity interval and azimuthal interval are shown in Table IV and Table V 
respectively19.  

Table IV 
Intermittency exponents αq for order  q = 2 to 6 in the pseudo-rapidity   

interval. 

 q=2 q=3 q=4 q=5 q=6 

αq 0.174±0.004 0.570±0.013 1.130±0.032 1.729±0.052 2.312±0.072 

Table V 
Intermittency exponents αq for order  q = 2 to 6 in the azimuthal   interval. 

 q=2 q=3 q=4  q=5 q=6 

αq 0.251±0.007 0.698±0.018  1.282±0.034 1.923±0.057 2.569±0.082 

The relationship is not exact because Fq and Gq  are different moments 
and approach each other only in the limiting case of infinite N. It is clear 
from (10) that the derivation of αq from zero is equivalent to the deviation of 
τq

dyn from (q–1). Thus for the comparison of the fractal behavior of <Fq > 
and < Gq>, we should compare αq and (q–1 – τq

dyn)12,20. We have plotted the 
value for αq (solid circles) and the value for (q–1 – τq

dyn  ) (open circles) with 
the order q in Fig. 2(a) for the η interval and Fig. 2(b) for the φ  interval. It 
is observed from these Figs. that in each case the two values  αq and  
(q–1 – τq

dyn) are not equal but both of them increase with the order q. 
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Fig. 2(a) 

Compaison of the exponents of  αq  of Fq and (q–1 – τq
dyn   ) of Gq in  η interval. 

 
Fig. 2(b) 

Compaison of the exponents of  αq  of Fq and (q–1 – τq
dyn) of Gq in φ interval. 

The information dimension D1 of a self-similar set may be given 
by 

           Dq  =  for q = 1 

which describes how the information entropy21 
            S = – Σ (nm/N) ln(nm/N) θ(nm

 –1)    … (11) 

varies with decreasing widths of the pseudo-rapidity bins. 
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Since the intermittency index increases with the increase of q, we 
observe for a deviation of Dq from 1.0 at large q. One might also search 
for a deviation of Dq from unity where the statistics are best i.e. q = 1. 
Hence we look in more detail at the particular case q = 1, where D1 is 
the derivative of the entropy S with respect to ln δη. Hence calculation 
of entropy should be needed. We have calculated the value for 
horizontally averaged entropy < S > using Eq. (11) and we have plotted 
this with respect to ln (M) in Fig. 3(a). It is observed from the Fig. that 
the points approach a straight  line with a characteristic slope D1.  It 
should be investigated whether this tendency to approach a straight line 
is a real dynamical effect or just a result of saturation (bend over) at 
large M due to finite multiplicity. We, therefore, calculate <Sstat> in a 
manner similar to the calculation of <Gstat> using (11). <Sstat> of the 
randomized event is then interpreted as the average maximum entropy  
<Smax> attainable  for every event.The values of the normalized entropy 
<S>/<Smax> are plotted in Fig. 3(b). we have compared the normalized 
entropy  <S>/<Smax> of the experimental events with that of the 
FRITIOF data. 

 
Fig. 3(a) 

< S > as a function of ln (M) in η interval. 
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Fig. 3(b) 

Plot of <S>/<Smax> vs. ln (M) in η interval. 

For the  sake   of comparison we have  calculated  <S>/<Smax>  for the 
FRITIOF events. It is observed that the normalized entropy is almost unity 
in each phase space whereas the experimental data show the monotonic 
increase of normalized entropy suggesting non-random behavior in  
16O–AgBr interaction at 60 GeV/n.  

This  analysis reveals multi - fractality in the  pionisation  process in 
16O – AgBr interaction at 60 GeV/n. Further this fractal analysis indicates 
clearly that the modified Gq moment indeed  suppresses  statistical  noise. 
Suppression  is very prominent for order greater than  three.  <Gq>   exhibits   
asymptotic  power   law  behavior.  The   extracted dynamical signal   
(q–1 – τq

dyn  ) has a rough link with the intermittency exponents  αq . 
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Global stability analysis to control growth of tumor in  
an  immune-tumor-normal  cell model  with  drug 

administration in the form of chemotherapy 
Ranu Paul, Ms. Anusmita Das and Hemanta Kr. Sarmah 
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Guwahati-781014, Assam, India 

[Abstract: The main objective of this paper is to present a control policy for an 
immune-tumor-normal cell model with drug administration in the form of chemotherapy 
following certain model through both local and global stability analysis of tumor free 
equilibrium points. By constructing a simple quadratic Lyapunov function we determined a 
range for the drug administration rate so that the tumor free state can be made globally 
stable. ] 

Keywords: Equilibrium points, Local stability, Global stability, Lyapunov function. 

1. Introduction 
Cancer is still a leading cause of death in the world. Yet, much is still not 

known about the mechanism by which the disease gets incorporated in the 
cell system and how it can be cured. Growth of tumor cells for cancer is 
very complex in nature as it involves many biological factors. Cancer is 
caused due to unnatural growth of malignant cells which form tumor. A 
tumor is a non-linear dynamical system in which bad cells spread very 
quickly and eventually overwhelm good cells in the body. Majority of the 
tumor growth models are formulated in the form of differential equations. 
More recently, interest of the researchers has been shifted towards discrete 
models also. 

Till date many authors have proposed many tumor cell growth  
models8,9,10,11,13,15,17,21 and have suggested various control policies that 
include treatment such as immunotherapy4,7,19, drug therapy  
(chemotherapy)1,3,6,9,16,18, use of tumor cell targetting viruses etc.2. 

In 2003, de Pillis, et. al.12 constructed a mathematical model of tumor 
growth and immune system interaction. In 2006, Novozhilov, et. al.2 
presented a model of tumor therapy using oncolytic viruses that specifically 
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target tumor cells. In 2009, Kirschner, et. al.4 investigated the global 
dynamics to show under what conditions tumor clearance can be achieved. 
In 2012, Wilson & Levy18 proposed a model related to immunotherapy 
using transforming growth factor β (TGF-β). 

In the model proposed by Pillis, et. al.12, the authors assumed that the 
immune and tumor cells compete in a predator prey fashion whereas the 
normal cells and tumor cells compete for available resources. Drug therapy 
was assumed to kill all types of cells viz. normal cells, immune cells and 
tumor cells but with different killing rates. Using optimal control theory 
with constraints and numerical simulations, the authors obtained new 
therapy protocols which they compared with traditional pulsed periodic 
treatment. The authors showed that though the optimal control generated 
therapies proposed by them produce larger oscillations in the tumor 
population over time, however, by the end of the treatment period, total 
tumor size become smaller than that achieved through traditional pulsed 
therapy, and the normal cell population suffers nearly no oscillations. 

In the present paper we have followed the tumor growth model suggested 
by de Pillis12. But in contrast to Pillis’  model12, we have assumed that the 
drug administration in the form of chemotherapy follows the logistic growth 
law with a per capita decay rate of the drug once being injected. Moreover, 
in the immune system equation (first equation), we have replaced Michaelis-
Menten form of the function by the Lotka-Voltera from. Further, in contrast 
to12, in the last term of the first three equations of the model, we have 
assumed that the drug kills all types of cells with the linear response curve 
(𝑉𝑉) = 𝑎𝑎𝑉𝑉, in all cases instead of an exponential one. Here (𝑉𝑉) is the fraction 
cell kill for a given amount of drug, 𝑉𝑉, at the tumor site.  

With the above mentioned changes in the model12 we have done our 
investigation which proceeds as follows: The model formulation is given in 
section 2. In section 3, we determined conditions for the existence of the 
equilibrium points. Local stability analysis of the equilibrium points is done 
in section 4. In section 5, we have shown the existence of a Lyapunov 
function having simple form and then applied the Lyapunov second method 
to globally stabilize the locally stable tumor free equilibrium point 𝐸𝐸2 which 
is the only realistic one (out of the four) and determined a range for the rate 
of drug administration to reduce the tumor size to zero and stabilize it 
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irrespective of the initial size of the tumor. Numerical simulation to validate 
our results is done in section 6 and section 7 contains concluding remarks. 

2. The model 

The tumor growth model we considered in this paper is : 

 
where, 𝐼𝐼(𝑡𝑡), 𝑇𝑇(𝑡𝑡), 𝑁𝑁(𝑡𝑡) and 𝑉𝑉(𝑡𝑡) denotes the number of immune cells, 
number of tumor cells, number of normal cells and the amount of drug 
administered at time 𝑡𝑡 respectively. The unit of cells are normalised by 
taking the carrying capacity of normal cells equal to one. 

Further, 𝑠𝑠 is the constant number of immune cells already present in the 
body, d1 is the natural death rate of immune cells, 𝑟𝑟1 is the intrinsic tumor 
growth rate, 1/b1 is the tumor population carrying capacity, 𝛼𝛼3 is the 
intrinsic rate of drug application, 1/𝛽𝛽3 is the maximum drug carrying 
capacity, 𝑑𝑑2 is the per capita decay rate of the drug after being injected and 
𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3 are the kill rates of the immune cells, the tumor cells and the 
normal cells respectively due to drug administration. 

3. Existence of the equilibrium point 

Equilibrium points of the system are given by 

 
Since 𝑁𝑁 = 0 signifies that the patient will die due to nullity of normal 

cells, we discard the equilibrium points with 𝑁𝑁 = 0 and check the stability of 
the other equilibrium points with 𝑁𝑁 ≠ 0. 
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Thus, the possible equilibrium points are : 

𝐸𝐸1 (𝑁𝑁1, 0, I1, 0), 𝐸𝐸2 (𝑁𝑁2, 0, 𝐼𝐼2, 𝑉𝑉2), 𝐸𝐸3 (𝑁𝑁3, 𝑇𝑇3, 𝐼𝐼3, 0) and 𝐸𝐸4 (𝑁𝑁4, 𝑇𝑇4, 𝐼𝐼4, 𝑉𝑉4). 

(i) The equilibrium point 𝐸𝐸1 (𝑁𝑁1, 0, 𝐼𝐼1, 0) lies in the N-I plane with  

𝑁𝑁1 > 0, 𝐼𝐼1 > 0 and 𝑇𝑇1 = 𝑉𝑉1 = 0 where 𝑁𝑁1 = 1, 𝐼𝐼1 = s/d1. 

(ii) The equilibrium point 𝐸𝐸2 (𝑁𝑁2, 0, 𝐼𝐼2, 𝑉𝑉2) lies in the N-I-V space with 

𝑁𝑁2, 𝐼𝐼2, 𝑉𝑉2 > 0 and 𝑇𝑇2 = 0. Here 𝑉𝑉2 = 𝑉𝑉∗,  

(iii) The equilibrium point 𝐸𝐸3 (𝑁𝑁3, 𝑇𝑇3, 𝐼𝐼3, 0) lies in the N-T-I space with 

𝑁𝑁3, 𝑇𝑇3, 𝐼𝐼3 > 0 and 𝑉𝑉3 = 0.  

Here  

Thus, we get, 

 
 which gives the equation, 𝐴𝐴1𝑇𝑇23 + 𝐵𝐵1𝑇𝑇3 + 𝐶𝐶1 = 0 

where, 
𝐴𝐴1 = (𝑐𝑐1𝑐𝑐3𝑐𝑐4 − 𝑟𝑟1𝑟𝑟2𝑐𝑐1𝑏𝑏1) 

𝐵𝐵1 = (𝑟𝑟1𝑟𝑟2𝑏𝑏1𝑑𝑑1 + 𝑐𝑐1𝑟𝑟1𝑟𝑟2 − 𝑐𝑐1𝑐𝑐3𝑟𝑟2 – 𝑐𝑐3𝑐𝑐4𝑑𝑑1) 

𝐶𝐶1 = (𝑐𝑐2𝑠𝑠𝑟𝑟2 − 𝑟𝑟1r2d1 + c3r2d1) 

Solving we get,   For the existence of 𝑇𝑇3, the 

discriminant must be positive i.e.  

(iv) The co-existing equilibrium point 𝐸𝐸4 (𝑁𝑁4, 𝑇𝑇4, 𝐼𝐼4, 𝑉𝑉4) lies in the  
N-T-I-V space with 𝑁𝑁4, 𝑇𝑇4, 𝐼𝐼4 and 𝑉𝑉4 > 0 where 

 
 (say). 
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Therefore,  

 

  
where,   

𝐴𝐴2 = 𝑐𝑐1𝑐𝑐3𝑐𝑐4 − 𝑟𝑟1𝑟𝑟2𝑏𝑏1𝑐𝑐1 

 

 
 

− . 
Solving, we get,  

  . 

Thus, for the existence of 𝑇𝑇4 , we must have . 

4. Local stability analysis of the equilibrium points  

For the stability of the equilibrium points 𝐸𝐸1, 𝐸𝐸2, 𝐸𝐸3, 𝐸𝐸4, the real part of 
all the eigen values of Jacobian matrix of the linearized system at the 
corresponding equilibrium points must be less than zero. Below, we have 
checked for each of the equilibrium points. 

For the equilibrium point 𝑬𝑬𝟏𝟏: 

This critical point lies in the N-I plane with 𝑇𝑇=𝑉𝑉=0, 𝑁𝑁=1=𝑁𝑁1,  
The Jacobian matrix of the system at 𝐸𝐸1 is, 

 
The eigen values are found to be, 
𝜆𝜆1 = −𝑟𝑟1 , 𝜆𝜆1 = 𝑟𝑟1 − 𝑐𝑐1𝑠𝑠/𝑑𝑑1 – 𝑐𝑐3, 𝜆𝜆3 = −𝑑𝑑1 < 0 and 𝜆𝜆4 = 𝛼𝛼3 – 𝑑𝑑2 > 0  

(since, 𝛼𝛼3 ≥ 𝑑𝑑2 as amount of drug administered cannot be negative). 
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So, the equilibrium point 𝐸𝐸1 is unstable which suggests the fact that 
without any drug administration or treatment policy, the tumor size cannot 
be diminished to zero. 

For the equilibrium point 𝑬𝑬𝟐𝟐: 

The equilibrium point  lies in 
the NIV-plane. 

The Jacobian matrix of the system at 𝐸𝐸2 is 

 
with the following eigen values, 

 

 

. 

For the equilibrium point 𝐸𝐸2 to be stable we must have 𝜆𝜆1 < 0 which 

gives  

Thus, we have,  … (1) 

For 𝜆𝜆2 < 0, we get,  

where,  
 

  
  
  … (2) 
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where,  

. 

So for 𝜆𝜆2 < 0, 𝛼𝛼3 should satisfy the inequality (2). 
The other two eigenvalues 𝜆𝜆3 and 𝜆𝜆3 are always negative for all 

admissible values of 𝛼𝛼3. 
Thus, for the equilibrium point 𝐸𝐸2 to be stable, the drug administration 

rate 𝛼𝛼3 must satisfy the inequalities (1) and (2) together. 
For the equilibrium point 𝑬𝑬𝟑𝟑: 
This equilibrium point lies in the NTI-plane since, 𝑉𝑉3 = 0 and 

. 
The Jacobian matrix of the system at 𝐸𝐸2 is 

 
One of the eigen values of the Jacobian matrix at this equilibrium points 

is found to be 

 𝜆𝜆4 = 𝛼𝛼4 – 𝑑𝑑2 > 0 , 

which confirms that this equilibrium point is unstable always. Physically, it 
means that without any drug administration tumor growth cannot be stopped 
and so cannot be stabilized to a certain size and so it will go on increasing in 
size. 

For the equilibrium point E4  : 

This equilibrium point lies in the NTIV-space. 

Here, 

 

. 
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The Jacobian matrix of the system at 𝐸𝐸4 becomes, 

 
Let,  

   
The characteristic equation of 𝐽𝐽E4 is 

(𝐷𝐷 − 𝜆𝜆)[(𝐴𝐴 − 𝜆𝜆)(𝐵𝐵 − 𝜆𝜆)(𝐶𝐶 − 𝜆𝜆) + 𝑐𝑐1𝑐𝑐2 (𝐴𝐴 − 𝜆𝜆)𝑇𝑇4𝐼𝐼4 + 𝑐𝑐3𝑐𝑐4 (𝐶𝐶 − 𝜆𝜆)𝑁𝑁4𝑇𝑇4] = 0. 

One of the eigen value is,  

𝜆𝜆 = 𝐷𝐷 i.e. 𝜆𝜆 = 𝛼𝛼3 −  −𝑑𝑑2 = −𝛼𝛼1 + 𝑑𝑑1 < 0. 

The other eigen values are derived from the equation, 

 

 
 +  

. 

By Routh-Hurwitz stability criteria14, 𝐸𝐸4 is stable when 
 𝑋𝑋 > 0, 𝑍𝑍 > 0 and  𝑋𝑋𝑍𝑍 > 𝑌𝑌 
Now, 

  𝑋𝑋 > 0 = > − (𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) > 0 
 

        Z > 0  … (3) 
 and 𝑋𝑋𝑍𝑍 > 𝑌𝑌 … (4) 

 
+  … (5) 
Thus, 𝐸𝐸4 will be locally stable if conditions (3), (4) and (5) are satisfied 

simultaneously. 
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5. Global stability analysis of the tumor free equilibrium point E2 

In 2001, A. Rantzer in his paper “A dual to Lyapunov’s stability theorm” 
introduced the concept of global stability and its analysis through Lyapunov 
Method that has opened a new research direction in nonlinear differential 
equations analysis. To study the condition of global stability for steady 
states of non-linear differential equations two well known methods are used. 
One technique is Bendixson-Dulac’s criterion and the other technique is 
Lyapunov method20. But Bendixson-Dulac’s criteria has the limitation that 
it can only be used in the two dimensional systems. But the Lyapunov 
second method is a powerful technique for multidimensional system.  

The principle advantage of Lyapunov’s method is the fact that it does not 
require the knowledge of solutions of the nonlinear differential equation. 
However, the method requires an auxiliary function called Lyapunov 
function that is difficult to construct. The second Lyapunov method is a 
powerful technique for multidimensional systems. There is no systematic 
method for constructing Lyapunov function for mathematical models. On 
the other hand the Lyapunov functions for a given system are not unique. It 
turns out that Lyapunov functions can always be found for any stable 
system and hence if a system is stable, a Lyapunov function exists and vice 
versa. 

Lyapunov stability theorem: Let 𝐸𝐸 be an open subset of 𝑅𝑅4 containing an 
isolated equilibrium point 𝑥𝑥0. Suppose that 𝑓𝑓 is continuously differentiable 
and then E a continuous differentiable function, say (𝑥𝑥), which satisfy the 
following conditions : 

(i)  
(ii)  

Then 
(i)   
(ii)  
(iii)  

In our model the main objective is to make the tumor free equilibrium 
point globally stable which means the total eradication of the tumor cells. 
We tried to achieve this goal by the Lyapunov second method. The only 
tumor free equilibrium point for our model which is locally stable is  
𝐸𝐸2 (𝑁𝑁2, 0, 𝐼𝐼2, 𝑉𝑉2). 



100 RANU PAUL, MS. ANUSMITA DAS AND H. KR. SARMAH 

We consider the function defined by 

 
Evidently, (𝐸𝐸2) = 0 and  in the NIVT-plane containing 

the equilibrium point 𝐸𝐸2. So, it is a Lyapunov function. 

Now, 

 

 

+  

 … (6) 

Since, at the equilibrium point  

So,  

 

  

 
Incorporating the above terms in (6), we get 

 
 (𝑁𝑁 −  

+  

 (V – V2)2 

×  

 = −𝑋𝑋T , 
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where 𝑋𝑋T = (𝑁𝑁–𝑁𝑁2, 𝐼𝐼−𝐼𝐼2, 𝑉𝑉−𝑉𝑉2, 𝑇𝑇−𝑇𝑇2) and A is a symmetric matrix given by 

 

 

  

if the matrix A is positive definite i.e. if all the principal minors of A are 
positive. 

Now, the first principal minor 

 

only if  

         
 and  and  

               which always holds.  … (7) 

Therefore, 𝑀𝑀1 > 0 

Again, for the second principal minor,  holds if 

 

  which is the same condition as mentioned in (7) 
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and  … (8) 

Therefore,  holds in the system else the 

equilibrium point 𝐸𝐸2 can not be globally stabilized whatever range we take 
for the rate of drug administration.  

The third principal minor  

If   

 . 

This can happen when    and   
Now, 
      

 

 … (9) 

where,  

Again,  

          

   
   … (10) 

where, . 

Therefore, 𝑀𝑀3 > 0 if condition (9) and (10) together are satisfied by the 
rate of drug administration 𝛼𝛼3. 
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Lastly, the fourth principal minor  if 

 

−    

− . … (11) 

Therefore, 𝑀𝑀4 > 0 if condition (11) is satisfied by the rate of drug 
administration 𝛼𝛼3. 

So the matrix A is positive definite if 𝛼𝛼3 satisfy the inequalities (8), (9), 
(10) and (11) simultaneously.  

Thus, the equilibrium point 𝐸𝐸2 satisfies all the conditions of Lyapunov 
stability theorem with the restriction for 𝛼𝛼3 given by (8), (9), (10) and (11) 
i.e. for the tumor free equilibrium point 𝐸𝐸2 to be globally asymptotically 
stable, we must restrict the intrinsic rate of drug administration 𝛼𝛼3 by the 
condition (1), (8) and (9) simultaneously. 

6. Numerical simulation 
In this section, we present a long term dynamical behaviour of the 

tumor cells, immune cells and normal cells. Following 1(a) and 1(b) are the 
plots of number of normal cells and tumor cells Vs. time respectively for the 
parameter values within the range for the global stability of the tumor free 
equilibrium point 𝐸𝐸2. 

The plots clearly shows the stability of the equilibrium point 𝐸𝐸2. The 
parameter value we chose to plot the graph are : 

𝑠𝑠 = 0.05, 𝑐𝑐1 = 0.2,1 = 0.2,1 = 0.2, 𝑟𝑟1 = 0.4, 𝑟𝑟2 = 0.35, 𝑏𝑏1 = 1.5,  
𝑐𝑐2 = 0.3, 𝑐𝑐3 = 0.2, 𝑐𝑐4 = 0.25, 𝑎𝑎2 = 0.5, 𝑎𝑎3 = 0.25, 𝑑𝑑2 = 0.05 

and the initial points are taken as 𝑁𝑁(0) = 0.9, 𝑇𝑇(0) = 10-5, 𝐼𝐼(0) = 0.25,  
𝑉𝑉(0) = 10-5 

Further, we considered 𝛽𝛽3 = 0.7 and 𝛼𝛼3 = 0.075 

(For the above considered parameter values the range for 𝛼𝛼3 is  
0.05 ≤ 𝛼𝛼3 ≤ 2.5) 
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Fig 1(a) 

Number of Normal Cells Vs. Time. 

 

 
 

Fig. 1(b) 
Number of Tumor Cells Vs. Time. 

From the figure1(b) it is seen that there is a decay in the tumor size and 
after some time the tumor size stabilizes to zero volume whereas the no. of 
normal cells stabilizes to the 65 percent (approximately) of the body cell 
population. 
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The vector field plot along with four trajectories and the equilibrium 
point 𝐸𝐸2 (with the same set of parameter values taken in fig 1) is shown 
below : 

 
Fig. 2 

From the vector field plot (Fig. 2) we see that any trajectory starting from any initial 
point within the basin of attraction converges to the equilibrium point 𝐸𝐸2 (represented by 
the large black dot). This represents the fact that the body will recover from the tumor 
whatever be the initial conditions. 

7. Conclusion 
In this paper we analyzed the local stability of the equilibrium points. 

Global stability analysis of the locally stable tumor free equilibrium point 
was carried out by constructing a Lyapunov function and a range was 
determined for drug administration rate to see that the tumor size can be 
reduced to zero if we adopt a proper control policy. Numerical verification 
of our results has also been carried out through some diagrams. 
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[Abstract : The present investigation deals with the oscillatory flow of Bingham plastic 
fluid between two confocal elliptic cylinders. The inner cylinder is assumed to be at rest 
and the flow is caused by the rotation of the outer one. By transforming the confocal 
ellipses in the z-plane (z = x + iy) conformally to concentric circles in the non-dimensional 
𝜁𝜁 ˗ plane (𝜁𝜁 =  𝜉𝜉 + 𝑖𝑖𝜂𝜂), the problem has been solved by the use of perturbation technique. 
The approximate velocity distribution has been calculated and the results are presented in 
graphical form.] 

1. Introduction 

During the past several decades, rheology and continuum mechanics 
have bean emphasised for one–phase materials, specially to polimer 
solutions and polymer melts1. Surprisingly, less attention has been made to 
materials such as slurries, pastes, suspension etc. which are encountered in 
industrial problems. Many of these materials have a yield stress and a 
critical value below which they do not deform and above which deformation 
and flow arise according to different constitutive relations;  these are called 
viscoplastic materials. Viscoplastic models include the Bingham plastic, 
Herschel-Bulkley, Casson etc. However, all these models are discontinuous 
and analytical solutions are difficult to obtain except for some simple cases. 
It may be mentioned that Bingham2 was the first to describe such types of 
flows in this way. 

The flow of yield stress is encountered in many situations of engineering, 
industrial and geophysical aspects. For instance, mud and slurries are dealt 
with not only in off-shore construction, but also in mining and agro –and 
food–industries (e.g. fertilisers, margarine, mayonnaise, ketchup etc). In 
such cases, a minimum stress is to be applied to the material to start 
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flowing. As for example, we have the yield stress material like fresh 
concrete whose rheological properties are important3,4,5. Also, lahars 
resulting from rainfalls in volcanic areas show similar behavior6,7.  Such 
properties are also manifested in the slow failure of muddy soils. 

Despite the apparent diversity, these materials, to a first approximation, 
can be described as Bingham plastics in a good number of situations. At low 
stress, they behave like solids and at high stress they flow like viscous 
fluids. In its simplified form, a yield stress and a viscosity define them 
nearly completely. 

Extensive theoretical works on the slumping of viscoplastic material 
were achieved mostly in the framework of longwave approximation8, 9, 10. 
Using limit analysis, predictions have been made for yield stress material in 
the problems of cylinders and rectangles for incipient failure conditions11. 
However the complex interplay of geometry and rheology in the gravity 
flow of Bingham materials still needs clarification. As high values of the 
yield stress imply small lateral deformation, so, in general, it is often 
assumed that plastic viscosity plays no role in the slumping system12, 13. Yet, 
for low field stress, shear deformation and viscous stresses are likely to be 
important to the overall deformation. Also the specific role of the plastic 
viscosity may depend on the initial geometry of the system. 

In the present investigation, it is our aim to consider the oscillatory flow 
of Bingham plastic fluid between two confocal elliptic cylinders, the inner 
surface of which is at rest while the flow is caused by the rotation of the 
outer one. Using conformal transformation, the confocal ellipses are reduced 
to concentric circles and then the problem is solved by perturbation 
technique. The approximate velocity distribution is shown in graphical 
form. 

2. Fundamental equations 

The rheological equations of state are2: 
𝑝𝑝′𝑖𝑖𝑖𝑖  = 3𝑘𝑘𝑘𝑘 (in elastic regions, 1

2
 𝑝𝑝′𝑖𝑖𝑖𝑖 𝑝𝑝

′
𝑖𝑖𝑖𝑖  ≤  𝜈𝜈2) 

𝑝𝑝′𝑖𝑖𝑖𝑖 = 2𝜇𝜇𝑘𝑘 ′𝑖𝑖𝑖𝑖   (in elastic regions, 1
2

 𝑝𝑝′𝑖𝑖𝑖𝑖 𝑝𝑝
′
𝑖𝑖𝑖𝑖  ≤  𝜈𝜈2) … (1) 

𝑝𝑝′ 𝑖𝑖𝑖𝑖  = 2𝜂𝜂𝑘𝑘′ 𝑖𝑖𝑖𝑖   (in flow regions, 1
2

 𝑝𝑝′ 𝑖𝑖𝑖𝑖  𝑝𝑝
′
𝑖𝑖𝑖𝑖  ≥  𝜈𝜈2) 

with η = 𝜂𝜂1 +  𝜈𝜈(2𝑘𝑘′ 𝑖𝑖𝑙𝑙𝑘𝑘′ 𝑖𝑖𝑙𝑙)
− 12 . 
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In the above,  𝜂𝜂1 is the reciprocal of mobility, ν is the constant yield 
value, μ is the constant rigidity modulus in the elastic, k (non necessarily 
constant) is the bulk modulus, 𝑘𝑘′ 𝑖𝑖𝑖𝑖  is the rate of strain tensor, 𝑝𝑝′ 𝑖𝑖𝑖𝑖  is the 
stress tensor, e = 𝑘𝑘𝑖𝑖𝑖𝑖  is the dilatation and 𝑘𝑘𝑖𝑖𝑖𝑖  is the strain tensor. The prime 
denotes deviatoric components of tensor. 

Since we are non concerned with elastic deformation, so the elastic 
region is treated as rigid. The transition conditions to be satisfied on the 
yield surface are : (i) the velocity must be continuous and (ii) the rate of 
strain tensor 𝑘𝑘′ 𝑖𝑖𝑖𝑖  must vanish. 

The equations of motion are  

 
𝜕𝜕𝑝𝑝 ′𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

  + 
𝜕𝜕𝑝𝑝 ′𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

 + 𝑋𝑋𝑖𝑖 =  𝜌𝜌 𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕

 ,           … (2) 

𝑋𝑋𝑖𝑖  being the body force, 𝑤𝑤𝑖𝑖  the velocity components and 𝜌𝜌 the density. 

3. The problem 

Let us consider the unsteady flow of  Bingham plastic between  two  
confocal  elliptic cylinders. The inner cylinder is assumed to be at rest while 
the flow is caused by the rotation of the outer one. The distance between the 
foci of the elliptic section is taken as d. The plastic flows axially parallel to 
the generator of the cylinders and the pressure gradient is assumed to be 
zero. The velocity components are taken as {0, 0, 𝑊𝑊(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝜕𝜕)} referred to 
Cartesian set of axes and time t. 

The boundary conditions are: 
W = 0 at the inner cylinder, 
W = 𝑊𝑊0 𝑓𝑓(𝜕𝜕) at the outer cylinder,  … (3) 

where  𝑊𝑊0  is constant and f(t) is a function of t. 
4. Solutions 

We have only two non-zero components of 𝑘𝑘′ 𝑖𝑖𝑖𝑖  given by 

 𝑘𝑘′𝑥𝑥𝑧𝑧  = 1
2
 𝜕𝜕𝑊𝑊
𝜕𝜕𝑥𝑥

 and 𝑘𝑘′𝑦𝑦𝑧𝑧  = 1
2
 𝜕𝜕𝑊𝑊
𝜕𝜕𝑦𝑦

  … (4) 

Hence  the  equation (2) gives 

 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝜂𝜂 𝜕𝜕𝑊𝑊

𝜕𝜕𝑥𝑥
� + 𝜕𝜕𝑊𝑊

𝜕𝜕𝑦𝑦
�𝜂𝜂 𝜕𝜕𝑊𝑊

𝜕𝜕𝑦𝑦
�  =  𝜕𝜕𝑊𝑊

𝜕𝜕𝜕𝜕
 , …  (5) 
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where  

  η = 𝜂𝜂1 +  𝜈𝜈 ��𝜕𝜕𝑊𝑊
𝜕𝜕𝑥𝑥
�

2
 +  �𝜕𝜕𝑊𝑊

𝜕𝜕𝑦𝑦
�

2
 �
− 12

. … (6) 

Transforming equations (5) and (6) into conjugate complex variables  
z = x + iy and 𝑧𝑧̅ = x – iy,  
we get 

 𝜕𝜕
𝜕𝜕𝑧𝑧
�𝜂𝜂 𝜕𝜕𝑊𝑊

𝜕𝜕𝑧𝑧
� + 𝜕𝜕𝑊𝑊

𝜕𝜕𝑧𝑧̅
�𝜂𝜂 𝜕𝜕𝑊𝑊

𝜕𝜕𝑧𝑧̅
�  = 1

2
𝜌𝜌 𝜕𝜕𝑊𝑊

𝜕𝜕𝜕𝜕
 , … (7) 

with  

 η = 𝜂𝜂1 +  2𝜈𝜈 � 𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧

 𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧̅
�
− 12. … (8) 

Substituting (8) into (7) and rearranging we get 

4𝜂𝜂1
𝜕𝜕2𝑊𝑊
𝜕𝜕𝑧𝑧𝜕𝜕𝑧𝑧̅

 + ν� 𝜕𝜕
𝜕𝜕𝑧𝑧
�𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧̅

 �𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧

 𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧̅
�
− 12� +  𝜕𝜕

𝜕𝜕𝑧𝑧̅
�𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧̅

 �𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧

 𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧̅
�
− 12�� = 𝜕𝜕𝑊𝑊

𝜕𝜕𝜕𝜕
. … (9) 

Now the confocal ellipses in the z-plane may be transformed conformally 
to the concentric circles of dimensionless radii a and b (1<a<b) in the non-
dimensional ζ ˗ plane by the transformation 

z = 𝑑𝑑
4
 �𝜁𝜁 +  1

𝜁𝜁
�,  𝑧𝑧̅ = 𝑑𝑑

4
 �𝜁𝜁̅+  1

𝜁𝜁�
�    … (10) 

where 𝜁𝜁 = r𝑘𝑘𝑖𝑖𝑖𝑖  and 𝜁𝜁̅ = r𝑘𝑘−𝑖𝑖𝑖𝑖 .  

The distance d between the foci of the elliptic sections may be taken as 

the typical distance in the z-plane to define the dimensionless number 

𝜎𝜎 =  𝜈𝜈𝑑𝑑
𝜂𝜂1𝑊𝑊o

. 

Using (10), the equation (9) is transformed to 

1
𝑊𝑊o

 𝜕𝜕
2𝑊𝑊

𝜕𝜕𝜁𝜁𝜕𝜕𝜁𝜁�
 - 𝜅𝜅
𝑊𝑊o

 �1 −  1
𝜁𝜁2� �1 −  1

𝜁𝜁�2�
𝜕𝜕𝑊𝑊
𝜕𝜕𝜁𝜁

 = − 𝜎𝜎
16

𝜕𝜕
𝜕𝜕𝜁𝜁
�𝜕𝜕𝑊𝑊
𝜕𝜕𝜁𝜁�

 �
�1− 1

𝜁𝜁2��1− 1
𝜁𝜁�2�

𝜕𝜕𝑊𝑊
𝜕𝜕𝜁𝜁   𝜕𝜕𝑊𝑊𝜕𝜕𝜁𝜁�

�

1
2

�  

 + Complex conjugate expression … (11) 

where 𝜅𝜅 = 𝜌𝜌𝑑𝑑
2

16𝜂𝜂1
, a constant quantity. 
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The equation (10) is to be solved subject to the boundary conditions 

 … (12) 

We now assume σ to be sufficiently small for convergence so that a 
solution of (11) can be developed with successive approximations for W 
equal to partial sum of the series 

W = W�0(𝑊𝑊o +  𝜎𝜎𝑊𝑊1 +  𝜎𝜎2𝑊𝑊2 + .  .  .  .  .  ) … (13) 

Substituting this into (11) and equating different powers of  𝜎𝜎 from both 
sides, we get the following differential equations for 𝑊𝑊o , 𝑊𝑊1, ......  

, … (14) 

 
                                  +  Complex conjugate expression …. (15) 

For each approximation to W, the boundary conditions are as follows: 

 … (16)      

Again  to  solve the equations (14) and (15) we assume that the parameter 

λ is small and 0 < λ < 1. Then we may take  

𝑊𝑊o(𝜁𝜁, 𝜁𝜁 ,̅ 𝜕𝜕) = [𝑊𝑊00(𝜁𝜁, 𝜁𝜁)̅ +  𝜆𝜆𝑊𝑊01(𝜁𝜁, 𝜁𝜁)̅+ .  .  .  . ]e
iλt
κ   … (17) 

so that Eq. (14) gives by equating powers of  λ  

 … (18) 



114 ANUP KUMAR KARAK  
and the boundary conditions give  

 … (19)  

Solutions of the equations (18) subject to (19) are 

   … (20) 

 

          + A + B log r  … (21) 

   

 

 
 … (22) 

Thus the expression for 𝑊𝑊0 is obtained from Eqs. (17), (19) and (20) as 

 

           (23) 

  Now to solve the equation (13) by the use of (23), we first note that the 
right hand side of Eq. (15) becomes independent of time. Hence we assume 

𝑊𝑊1 (𝜁𝜁 , 𝜁𝜁 ,̅ 𝜕𝜕) = 𝑊𝑊𝑠𝑠  (𝜁𝜁 , 𝜁𝜁)̅ +  𝑊𝑊𝑢𝑢  (𝜁𝜁 , 𝜁𝜁 ,̅ 𝜕𝜕),  … (24) 
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where 𝑊𝑊𝑠𝑠  (𝜁𝜁 , 𝜁𝜁)̅ and  𝑊𝑊𝑢𝑢  (𝜁𝜁 , 𝜁𝜁 ,̅ 𝜕𝜕) represent the steady and unsteady parts of 
𝑊𝑊1 respectively.  

Substituting Eq. (24) into Eq. (15) and then equating the steady and 
unsteady parts, we get 

 … (25) 

 … (26) 

The boundary conditions for 𝑊𝑊𝑠𝑠 and 𝑊𝑊𝑢𝑢  are  

𝑊𝑊𝑠𝑠 = 𝑊𝑊𝑢𝑢  = 0 on |𝜁𝜁|  =  𝑎𝑎, 𝑏𝑏. … (27) 

Using (23), we have from (25) 

 

 ×  

  

 ×  

Integrating we get 

 

 ×  

  

 ×  

 + Complex conjugate expression + Harmonic function. 
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This implies 

L 

  

  

          … (28) 

Using boundary conditions (27), we have 

 

 ×  
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Hence, we have to the first order of λ 

 

  

  

  

  

  

        … (29) 

Again, to solve the equation (26) we assume 

𝑊𝑊𝑢𝑢(𝜁𝜁, 𝜁𝜁 ,̅ 𝜕𝜕) =  [𝑊𝑊10(𝜁𝜁, 𝜁𝜁)̅ +  𝜆𝜆𝑊𝑊11(𝜁𝜁, 𝜁𝜁)̅+ .  .  .  . ] 𝑘𝑘
𝑖𝑖𝜆𝜆𝜕𝜕
𝜅𝜅     … (30) 

Putting this value in Eq. (26) and then equating different powers of λ, 
we get 

 … (31) 

 … (32) 

while the boundary conditions (27) give 

𝑊𝑊1𝑛𝑛  = 0 on |𝜁𝜁| = a, b (n = 0, 1, . . . . .) … (33) 

Solving Eqs. (31) and (32) subject to (33) we get 
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so that 

 

and hence 𝑊𝑊1(𝜁𝜁, 𝜁𝜁 ,̅ 𝜕𝜕) = 𝑊𝑊𝑠𝑠(𝜁𝜁, 𝜁𝜁)̅. 

This shows that 𝑊𝑊1 is independent of time t. 

Thus, we have finally to the first order of σ and λ 

𝑊𝑊(𝜁𝜁, 𝜁𝜁 ,̅ 𝜕𝜕) =  𝑊𝑊�0[𝑊𝑊0(𝜁𝜁, 𝜁𝜁,�  𝜕𝜕) +  𝜎𝜎𝑊𝑊1(𝜁𝜁, 𝜁𝜁)̅+ .  .  .  . ] … (34)  

where 𝑊𝑊0(𝜁𝜁, 𝜁𝜁,�  𝜕𝜕) and 𝑊𝑊1(𝜁𝜁, 𝜁𝜁)̅ are given by Eqs. (28) and (29) 

respectively. 

5. Numerical results 

To get a physical insight into the problem, we consider the case when 

a = 2, b = 3 corresponding respectively to inner boundary with semi-major 

and semi-minor axes 5𝑑𝑑
4

 and 3𝑑𝑑
4

 and outer boundary with semi-major and 

semi-minor axes 5𝑑𝑑
3

 and 4𝑑𝑑
3

. These values satisfy the conditions of the ellipse 

being confocal. The variations of 𝑊𝑊0 for different values of r and λ at θ = 0 

are shown in Figure 1 while those of 𝑊𝑊1 are depicted through Figure 2. 

Figure 3 gives the representation of the velocity for different values of λ for 

𝜎𝜎 = 0.5. 

Figures 1 and  2 show that 𝑊𝑊0 and 𝑊𝑊1 both increase with increase  
of λ. 𝑊𝑊0 increases from the inner to the outer boundary of the cylinders 
while 𝑊𝑊1 attains its maximum at the middle part of it. It is also noted from 
Figure 3 that the velocity increases with increasing values of 𝜎𝜎. 

For numerical calculations, we have chosen 𝜆𝜆𝜕𝜕
𝜅𝜅

 = 𝜋𝜋
2
 and taken only real 

parts of the functions from physical point of view. 
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1. Introduction 
Geomagnetic storm is a physical phenomenon having complex 

dynamical structure and stochastic nature. The Sun emits a stream of plasma 
particles, known as solar wind which is coming towards the Earth with an 
average speed of 400 Km./sec. The solar  wind interacts with the terrestrial 
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magnetosphere, a cusp is formed and a number of energized particles are 
injected into the magnetosphere through the cusp. These injected particles 
then generate a ring current around the Earth which in turn lowers down the 
magnitude of the horizontal magnetic field from its average value. This 
decrement is measured in nano Tesla and termed as Disturbance storm time 
(Dst) index. Four magnetometer stations, namely Hermanus (33.3° south, 
80.3° in magnetic dipole latitude and longitude), Kakioka (26.0° north, 
206.0°), Honolulu (21.0° north, 266.4°), and San Juan (29.9° north, 3.2°) 
had been chosen to record the data as their specific position is beyond the 
influence of auroral activities or equatorial electrojet currents1,2. The 
negative value of Dst index is a direct measurement of geomagnetic storm 
obeying the scale : upto -100 nT means moderate storm, between -100 nT 
and -250 nT intense storm and less than -250 nT indicates super storm.  

Geomagnetic storm has severe damaging effect on the Earth’s electrical 
and technical hardware. Intense or super storm can completely collapse the 
power grids to cause massive black out in a large area, disturbs the 
navigation and satellite communications, destroys computer networks and in 
general can cause several human hazards and enormous monetary losses. 
The upper latitude regions of the Earth, specifically the regions belonging to 
Scandinavia, Russia, Canada or U.S. are the most affected ones3,4,5,6. 

To understand the actual dynamics of the geomagnetic storm, Dst index 
had been studied and analysed extensively using various approaches in the 
last decades.  In the year of 1975, Burton et al.7 first proposed an empirical 
relationship of Dst index based on the solar wind and IMF BZ. Since then, a 
number of works had been published investigating the nature8-12 of Dst 
index in relationship with the other parameters. 

As numerous previous works had suggested, IMF BZ plays a key role in 
the solar wind-magnetosphere coupling and the occurrence of geomagnetic 
storm. According to Lu et al.13, when the direction of the IMF BZ is 
southward, the cusp moves to the equatorial region and widens as the 
intensity of the IMF BZ increases while for the northward direction , the 
cusp moves away from the equatorial region and narrow down. In our 
previous studies, we investigated long-range correlation and the stochastic 
nature of the Dst index14 and proposed a cellular automata model of Dst 
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index based on self-organized criticality15. In the present paper, we are 
trying to investigate the effect of the IMF BZ on the magnetic reconnection 
process which injects significant amount of solar wind energy into the 
magnetosphere and its threshold value. 

2. Data 
Here we used the hourly averaged Dst index, solar wind ion density, flow 

speed and BZ component of the interplanetary magnetic field (IMF) data 
from the year 1997 to the year 2007 as extracted from NASA/GSFC's 
OMNI data set through OMNIWeb16. The OMNI data were obtained from 
the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. 

3. Method 
The solar wind energy can be calculated from the ion density and flow 

speed as: 

dE(t) = norm (
1
2
 × ion density × ( flow speed )2) ... (1) 

The cusp width W has been considered as a function of IMF BZ obeying 
the following relations: 

W(t) = 0.005 BZ (t) for BZ (t) > BTH … (2) 
W(t) = BZ (t) for BZ (t) < BTH … (3) 

where BTH is the threshold value of IMF BZ.  
The total energy input to the magnetosphere at any time t is  

E(t) = W(t) × dE(t) … (4) 
Then the value of E is averaged over 36 data using the moving average 

technique and termed as Ei.  
Ei is a time-series representation of the amount of energy being injected 

into the magnetosphere. This energy then causes the Earth’s horizontal 
magnetic field to deviate from its average value. This deviation is measured 
and termed as Dst index. Thus Dst index has a proportional relationship 
with the injected input energy. The correlation coefficient between the time 
series Ei and Dst index is estimated for a number of step shifts, ranging from 
1 to 720. For each step, a value of correlation coefficient is estimated. The 
maximum value of the coefficient, the corresponding step shift and the 
associated value of BTH are recorded. 

http://omniweb.gsfc.nasa.gov/
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Now the whole calculation is repeated for different values of BTH, 
ranging from -40 nT to 40 nT, with an increment of 0.5 nT. Thus, for each 
year we can get the threshold value of BTH for which the correlation 
coefficient between input energy Ei and Dst index is maximum. Also, the 
value of the step shift associated with the maximum correlation coefficient 
denotes the time-interval between the injection of input energy into the 
terrestrial magnetosphere and its effect on the horizontal magnetic field of 
the Earth. 

4. Result and discussion 
The above calculations are applied to the entire 23rd solar cycle, i.e. to 

each of the years of the 11-year span of 1997 to 2007. Figure 1 shows the 
variation of correlation coefficient with the number of step shifts for the 
year 2001. It is observed that the correlation coefficient reaches its 
maximum value at the step shift of 16 for this year. Figure 2 shows the 
variation of correlation coefficient with the variation of BTH, the threshold 
value of IMF BZ, also for the year of 2001. This graph exhibits the 
maximum value of correlation coefficient for BTH = 4nT. Table I shows the 
value of BTH, maximum correlation coefficient and the associated time-
interval for each of the year of entire 23rd solar cycle. From the result, it is 
seen that for each year, the value of threshold value of IMF BZ is different. 
Only beside the year of 2004, a low positive value of BZ i.e. a low value of 
northward BZ serves as the threshold value. Also, there is a time-interval of 
13-18 hour between the injection energy and its effect on the horizontal 
magnetic field.  

 
Fig. 1 

Variation of correlation coefficient with the number of steps for the year 2001. 
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Fig. 2 

Variation of correlation coefficient with variation of BTH, the threshold value of IMF BZ. 

Table I 
Value of BTH, maximum correlation coefficient and the associated time-

interval for each of the year of entire 23rd solar cycle. 

Year BTH (nT) Step shifts Correlation coefficient (in %) 

1997 2.5 15 69.8636 

1998 5 15 68.4855 

1999 5 15 65.3289 

2000 3.5 15 74.7755 

2001 4 16 75.1322 

2002 3 16 71.7233 

2003 4 13 65.9140 

2004 -1 13 72.2417 

2005 3 17 62.9233 

2006 4 16 61.3220 

2007 1.5 18 51.8333 

5. Conclusion 
Dst index is the measurement of the net decrement of the Earth’s 

horizontal magnetic field from its average value and thus the geomagnetic 
storm. This time-series is primarily controlled by the solar wind energy and 



126 ADRIJA BANERJEE, A. BEJ, T. N. CHATTERJEE AND A. MAJUMDAR 

 

  

the IMF BZ. The direction and intensity of IMF BZ plays a crucial role in the 
solar wind-magnetosphere coupling and the injection of solar wind energy 
into the magnetosphere. In this paper, we had studied the effect of BZ on the 
cusp width during the coupling process. It has been observed that the IMF 
BZ has a specific threshold value, BTH for each year. For the values greater 
than BTH, the cusp is nearly closed whereas for the values less than BTH, the 
cusp is open. For each of the year of the cycle 1997-2007, BTH has a small 
value ranging from -1 nT to 5 nT. Also, the calculations shows that there is a 
13-18 hours’ time-interval between the injection of the input energy into the 
magnetosphere and its effect on the horizontal magnetic field of the Earth. 

This is a first-order study of the effect of BZ on the solar wind-
magnetosphere coupling process and the width of the cusp. Future work can 
be aimed to analyze the exact mathematical relations between IMF BZ and 
the coupling process. 
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[Abstract : In this investigation both compressive and rarefactive solitons are shown to 
exist in electron-positron-ion plasma consisting of high relativistic thermal ions, nonthermal 
electrons and thermal positrons. The compressive and rarefactive Korteweg-de Vries (KdV) 
solitons of small amplitude are shown to exist only for fast ion-acoustic mode. It has been 
found that the inclusion of variable temperature of the ion species not only significantly 
modifies the basic features (amplitude and width) of the ion-acoustic solitons but also 
introduces a new regime for the existence of solitons. Further, the increase in ion to electron 
temperature ratio results in decrease in soliton amplitude. Also increase in relativistic factor 
increases the soliton amplitude.] 
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1. Introduction 
The study of linear and nonlinear wave motions in electron–positron–  

ion plasmas1-17 has been a great deal of interest due to the occurrence of 
such type plasmas in Van Allen radiation belts18-22, active galactic nuclei23, 
quasars and pulsar magnetosphere24, 25, semiconductor plasmas26, intense 
laser fields27, centre of our galaxy28, the early universe29, 30, neutron stars31, 
and white dwarfs32, 33, intense laser-solid matter interaction experiments34, 
solar atmosphere35 and also produced in some laboratory environments36-39. 
It has been found that the presence of positrons in the plasma have 
important roles on the different phenomena in astrophysical plasma5, 26.  

The propagation of ion acoustic waves in collisionless plasma can be 
described by the KdV equation using perturbation method40. The ion-
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acoustic solitons in electron-positron and ion plasmas is investigated by 
Popel, et al.5. In their investigation, they have reported that the presence of 
positron reduces ion acoustic amplitude. Ferdousi, et al.41 studied the ion 
acoustic KdV, mKdV, and Gardner solitons in an unmagnetized electron-
positron-ion plasma with non-extensive electrons and positrons. Ferdousi,  
et al.42 have investigated the properties of obliquely propagating ion-
acoustic solitary waves in the presence of ambient magnetic field in an 
electron-positron-ion non-thermal plasma through Korteweg-de Vries (KdV) 
and modified KdV (mKdV) equations. They have found that the electron and 
positron non-extensivity and external magnetic field (obliqueness) have 
significant effects on the characteristics of solitary waves. Chatterjee, et al.43 
studied the existence of ion acoustic solitary waves in magnetized dense 
electron-positron-ion plasma by using Sagdeev potential method. The effect 
of ion temperature on the formation of solitary waves is studied, and the 
ranges of parameters for which solitary waves and double layers exist are 
also studied. Salahuddin, et al.44 studied the ion-acoustic envelope solitons 
in a collisionless unmagnetized electron-positron-ion plasma by Krylov-
Bogoliubov-Mitropolsky perturbative technique. They have shown that the 
electron-positron plasmas become richer in linear and nonlinear wave 
dynamics. 

However, most of these studies are focused on non-relativistic plasmas, 
but when the particle velocities are comparable to the speed of light, the 
characteristics of solitons are shown to be significantly influenced by 
relativistic effect45-49. In space observations, the high speed streaming ions 
and electrons are found to play a major role in the physical mechanism of 
the non linear structure. This type of plasma occurs in space plasma 
phenomena such as plasma sheet boundary layer of earth’s 
magnetosphere50,51 and in laser-plasma interaction52,53. Also relativistic 
plasma can be found in many practical situations e.g. in space plasma 
phenomena50, Van Allen radiation belts54 and laser plasma interaction 
experiments55. The relativistic motion in plasma is reported to exist during 
the early period of evolution of the Universe56.  Shah and Saeed57 studied 
the effects of various plasma parameters on the nonlinear propagation of ion 
acoustic waves in relativistic electron-positron-ion plasma. Gill, et al.58 
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studied the dynamics of ion acoustic solitons in a weakly relativistic 
electron-positron-ion plasma. Saeed, et al.59 investigated the nonlinear 
propagation of ion-acoustic solitons in relativistic electron-positron-ion 
plasma comprising of Boltzmannian electrons, positrons, and relativistic 
thermal ions. They found that the increase in the relativistic streaming factor 
causes the soliton amplitude to thrive and its width to shrink. The soliton 
amplitude and width are found to decline as the ion to electron temperature 
ratio is increased. The increase in positron concentration results in reduction 
of soliton amplitude. The soliton amplitude enhances as the electron to 
positron temperature ratio increases. Shah, et al.60 investigated electrostatic 
ion acoustic solitary waves in a plasma system comprising of relativistic 
ions, kappa distributed electrons, and positrons. They reported that increase 
in the relativistic streaming factor and positron and electron kappa 
parameters cause the soliton amplitude to thrive. But the soliton amplitude 
diminishes as the positron concentration is increased in the system. Hafez 
and Talukder61 have investigated the weakly relativistic effects on ion 
acoustic solitary waves by considering nonextensive electrons and 
isothermal positrons. Recently, Hafez, et al.62 have studied the weakly 
relativistic effects on the electrostatic ion acoustic solitons of positive as 
well as negative potentials with nonextensive electrons and positrons. 
Javidan and Saadatmand63 have studied the effect of high relativistic 
nonthermal ions and nonthermal electrons in electron-ion-positron plasma 
system. They have obtained the maximum amplitude of the solitary wave 
and its width as functions of plasma parameters. Javidan and Pakzad64 have 
investigated the propagation of ion acoustic waves in plasmas containing 
superthermal electrons, thermal positrons and high relativistic ions. In their 
investigation, the effects of relativistic ions and superthermal electrons on 
the soliton identifications are discussed. 

In this paper, we have investigated the influences of positron 
concentration, electron to positron temperature ratio, ion to electron 
temperature ratio, and relativistic streaming factor on the nonlinear 
propagation of ion acoustic solitary waves in unmagnetized plasmas, whose 
constituents are high relativistic thermal ions, nonthermal electrons, and 
thermal positrons. The paper is organized as follows. First in Sec. II, we 
present the governing equations for nonlinear ion acoustic waves in 
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electron-positron-ion plasma and then using the fluid model, derived the 
KdV equation. In Sec. III, condition for existence of solitons and in Sec. IV, 
Solitary wave solution is discussed. Finally, a brief summary and discussion 
of our results are given in the last Sec. V. 

2. Basic equations and derivation of KdV equation 

We consider an unmagnetized plasma consisting of relativistic 
positive ions, nonthermal electrons and thermal positrons. The fluid 
equations of motion governing the collision less plasma in one dimension 
are: 

    …  (1) 

  … (2) 

      … (3) 

  … (4) 

    … (5) 

    … (6) 

where, ,  ( = ion to electron 

temperature ratio),  ( r  is the parameter that determines the 

population of nonthermal (fast) electrons (Kalita and Kalia65),    

( = electron to positron temperature ratio) and   represents the 

relative positron concentration in electron-positron-ion plasma. 
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In equations (1) – (6), densities pei nnn ,, are normalized by the 
unperturbed electron density 0en , time t by the inverse of the characteristic 

ion plasma frequency i.e., , distance x by the electron 

Debye length , ion velocity vi by the ion-acoustic speed 

, pressure ip by ie Tn 0 and the potential φ  by .  

In presence of non-thermal electrons, the variation in ion density with 
relativistic effects is negligible in comparison to the relativistic variation in 
its mass. So the Lorentz factor γ  is not considered in equation (1) as in the 
references45-67. The massive and thermal ions are assumed to be relativistic, 
so the plasma composition is dominated by the relativistic ion species. At 
the same time, from the behavioural point of view, ions and positrons are 
positively charged. Due to relativistic effect of the dominant ions, the bulk 
of non-thermal electrons are separated into two parts, the greater part is left 
as nonthermal electrons and a small part is turned into positrons due to 
negligible collision with ions. 

The reductive perturbation method can be used for investigating the 
behaviour of nonlinear ion acoustic waves. The stretched variables are 
defined as follows 

 
,
  … (7) 

where ε is a small dimensionless parameter which characterizes the strength 

of the nonlinearity and U is the phase velocity of the ion-acoustic wave in 
( )tx, space. Thus, the space and time derivatives are replaced by 



134 R. DAS  

 and   respectively. Dependent variables 

are expanded as follows 

  

  

  

  … (8) 

  

  
With the use of the transformations (7) and the expansions (8) in the 

normalized set of equations (1) – (6) subject to the boundary conditions,  
 ,  , at ,  

we get fromε  order equations, the following quantities : 

 

 … (9) 

where . 

Using the values of 1in , 1en  and 1pn  in the last equation of (9), we obtain 
the phase velocity equation for the nonlinear waves 

 … (10) 

This gives the expressions of the phase velocity of Javidan and 
Saadatmand63 for  and Gill, et al.56 for , . 

This gives                                                                                     

 



 PROPAGATION OF ION ACOUSTIC SOLITARY WAVES ETC. 135 

Using the relation (10) in the set of 2ε - order equations obtained from 
equations (1) – (6), we have the KdV equation as, 

  … (11) 

where  

 

 
3. Condition for the existence of solitons and solitary wave solution 

From the expression for phase velocity (10), we have  

(assuming  ) 

Therefore  or  

Also from (10), irrespective of δ, , which is possible 

as . 

Using the transformation , the KdV equation (11) can be 
simplified to give the solitary wave solution as  

 

where V is the velocity with which the solitary waves travel to the right. 

Thus, the wave amplitude of the soliton is given by   and the 

corresponding width by . 

4. Discussion and results 
In this model of electron-positron-ion plasma, ion to electron temperature 

ratio is found to play a very significant role in the formation of KdV 
solitons. Only fast ion-acoustic mode is found to exist in our investigation 
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under the sound mathematical condition . The 

coefficients of KdV equation depend on the relative positron concentration 
(δ), electron to positron temperature ratio (σ), ion to electron temperature 

ratio (α), nonthermal parameter (β) and relativistic factor .  From 

figure 1, it is clear that the coefficient A tends to zero for some particular set 
of parameters. Further, A is negative  at . In this situation one can 
study the mKdV (modified Korteweg de-Vries) soliton. But in the 
investigation of Gill et al.58 investigated dynamics of ion-acoustic solitons in 
cold electron-positron-ion plasmas with weakly relativistic effect and 
without nonthermal particles and found that A  is always positive for all 
ranges of the parameters indicating that no double layers are possible.  In 
figure 2, corresponding to the nonlinear thermal parameter , the 
value of A  is negative for η  smaller than 6.0  (different from the 
conclusion of Gill et al.58) which admits rarefactive soliton in small range of 
β. Figure 1 may be comparable with the figure 2 of Javidan and 
Saadatmand63. The patterns of growths of A  in figures 1 and 2, based on 
various values of β are mostly quite different against the temperature ratios 

. For higher , increase in A  is much faster  
(Fig. 2) than that in figure 1 though it decreases slowly for β = 0.65. In the 
cases of β = 0.55 and 60.0  in Fig. 2, as η  is increased, A  decreases at first 
for the lower range of η and then increases for the higher range of η. On the 
other hand, in the corresponding cases (β = 0.55 and 60.0 ) in Fig. 1, A  
decreases for the entire range of η  and the decrease in A is very rapid 
compared with the decrease in A  for the lower range of η in Fig. 2.  From 
the comparison of the figures 3 (α = 0.0) and 4 (α = 0.05), it clear that B 
decreases when α increases. Figure 4 reflects the same pattern of figure 3 
but for α = 0.05 and the values of B are smaller than those for α = 0, 
otherwise B decreases as α  increases. Interestingly, coefficients A and B of 
Javidan and Saadatmand63 can be obtained (with some modification) by 
putting α = 0  and of Kaur et al.66 by putting α = 0, δ = 0 ;  that of Gill,  
et al.58 (for weak relativistic effect) by putting δ = 0 and β = 0. Computation 
work shows that increase in ion to electron temperature ratio (α) results in 
decrease in soliton amplitude. However, increase in relativistic factor 
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increases the soliton amplitude. Figure 5(a) shows that the amplitude of 
soliton increases as relativistic factor increases. The decrease (increase) in 
soliton amplitude is dependent on increase (decrease) in the coefficient A. 
Also the corresponding widths [(Fig. 5(b)] are seen to decrease with the 
increase of relativistic factor (η) attaining higher values. Figure 6(a) shows 
the growth of soliton amplitude for α = 0.05 which differs from that of the 
figure 5. The corresponding width [Fig. 6(b)] decreases with increase of η 
for α = 0.05. In cases of higher ion temperature, the increase in the 
streaming ion velocity v0, η causes the increase in the ion mass 

. Furthermore, the increase in the ion mass causes the decrease 

in the amplitude.  In both the figures 5(b) and 6(b), the magnitude of width 
decreases with the increase of relative positron concentration δ. From 
figures 5 and 6, it is clear that ion to electron temperature ratio affects the 
amplitudes and widths. Figure 7 show the uniform but relatively non-linear 
decrease of magnitude of B  with α  for fixed V = .0075, η = 0.2, σ = 0.20 
and δ = 0.40. The above results can be compared with the results obtained 
by Kalita and Das67.  

The present work is different from the work of Javidan and 
Saadatmand63, because in their investigation, the KdV equation has been 
derived for solitary waves in relativistic isothermal ions and without 
pressure variation equation. In our investigation we have shown the effect of 
ion to electron variable temperature ratio which significantly modifies the 
soliton behaviour and propagation properties in this electron-positron-ion 
plasma.  

 
Fig. 1 

The parameter A as a function of relativistic parameter η for different  
values of β  for fixed V = .0075, σ = 0, α = 0 and δ = 0.40. 
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Fig. 2 

The parameter A as a function of relativistic parameter η for different  
values of β  for fixed V = .0075, σ = 0.20, α = 0.05 and δ = 0.40. 

 
Fig. 3 

The parameter B as a function of relativistic parameter η for different  
values of β  for fixed V = .0075, α = 0, σ = 0.20 and δ = 0.40. 

 
Fig. 4 

The parameter B as a function of relativistic parameter η for different  
values of β  for fixed V = .0075, α = 0.05, σ = 0.20 and δ = 0.40. 
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Fig. 5 

Amplitudes (a) and widths (b) of compressive ion-acoustic solitons versus η  
for different values of  δ  for fixed V = .0075, α = 0, σ = 1 and β = 0.30. 

                     

Fig. 6 
Amplitudes (a) and widths (b) of compressive ion-acoustic solitons versus η  
for different values of δ  for fixed V = .0075, α = 0.05, σ = 1 and β = 0.30. 

 
Fig. 7  

The parameter B as a function of temperature ratio α for different  
values of β  for fixed V = .0075, η = 0.2, σ = 0.20 and δ = 0.40. 
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[Abstract : The present paper deals with the study of stability of equilibrium position 
of the motion of a system of two artificial satellites connected by a light, flexible, 
inextensible and non-conducting cable under the influence of earth's magnetic field, solar 
radiation pressure, shadow of the earth and air resistance. We discuss the case of elliptical 
orbit of centre of mass of the system. In non-linear oscillations of the system, one 
equilibrium position exists when all the perturbations mentioned above act on the system 
simultaneously. We apply Liapunov's theorem to test the stability of the equilibrium 
position. We find that the equilibrium position is unstable in the sense of Liapunov.] 
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1. Introduction 
The two pioneer workers Beletsky and Novikova1 and Beletsky2 studied 

the motion of a system of two cable-connected artificial satellites in the 
central gravitational field of force relative to its centre of mass. The present 
work is an attempt towards the generalisation of work done by them. In fact, 
the present work is a physical and mathematical idealisation of real space 
system. Singh and Demin3 and Singh4 investigated the problem in two and 
three dimensional cases. Das et al.5 studied the effect of magnetic force on 
the motion of a system of two cable-connected artificial satellites in orbit. 
Kumar and Bhattacharya6 studied the stability of equilibrium positions of 
two cable-connected artificial satellites under the influence of solar radiation 
pressure, earth's oblateness and earth's magnetic field. Kumar, et al.7 
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obtained the equations of motion of a system of two cable-connected 
artificial satellites under the influence of solar radiation pressure, earth's 
oblateness and shadow of the earth. Prasad and Kumar8 obtained  the 
equations  of  motion  of  a  system  of  two  cable-connected artificial  
satellites  under the influence of earth's magnetic field, earth's shadow, solar 
radiation pressure and earth's oblateness. 

Stability of equilibrium position of the motion of a system of two cable-
connected artificial satellites under the influence of earth's magnetic field, 
solar radiation pressure, shadow of the earth and air resistance in elliptical 
orbit is studied. Shadow of the earth is taken to be cylindrical and the 
system is allowed to pass through the shadow beam. The string connecting 
the two satellites is light, flexible, inextensible and non-conducting. Central 
attractive force of the earth will be the main force and all other forces, being 
small enough are considered here as perturbing forces. The satellites are 
taken as charged material particles. Charges have been assumed to be small 
so that interaction between them may be neglected. Since masses of the 
satellites are small and distances between the satellites and other celestial 
bodies are very large, the gravitational forces of attraction between the 
satellites and other celestial bodies including the sun have been neglected. 

2. The treatment of the problem 
A set of equations for motion of the system in rotating frame of reference 

is written as Kumar9 

 

and 

 … (1) 

With the condition of constraint  

 … (2) 
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Also 

 

 

 

  … (3) 

m1 and m2 are masses of the two satellites. B1 and B2 are the absolute values 
of the forces due to the direct solar pressure on m1 and m2 respectively and 
are small. Q1 and Q2 are the charges of the two satellites. μE is the 
magnitude of magnetic moment of the earth’s dipole. p is the focal 
parameter. μ is the product of mass of the earth and gravitational constant.  
λ is undermined Lagrange’s multiplier. ge is the force of gravity. e is 
ecentricity of the orbit of the centre of mass. v is the true anomaly of the 
centre of mass of the system. ∈  is inclination of the oscillatory plane of the 
masses m1 and m2 with the orbital plane of the centre of mass of the system. 
α is the inclination of the ray. γ is a shadow function which depends on the 
illumination of the system of satellites by the sun rays. If γ is equal to zero, 
then the system is affected by the shadow of the earth. If γ is equal to one, 
then the system is not within the said shadow. R is the modulus of position 
vector of the centre of mass of the system. c1 and c2 are the Ballistic co-
efficients. ρa is the average density of the atmosphere. i  is inclination of the 
orbit with the equatorial plane. θ2 is the angle between the axis of the 
cylindrical shadow beam and the line joining the centre of the earth and the 
end point of the orbit of the centre of mass within the earth's shadow, 
considering the positive direction towards the motion of the system. Prime 
denotes differentiation with respect to v. 

We see that the equations (1) do not contain the time explicity. 
Therefore, Jacobian integral of the problem exists as Kumar6. 
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Multiplying the first and second equations of (1) by 'X  and 'Y  
respectively and adding them and then integrating the final equation so 
obtained, we get the Jacobian integral in the form  

 

 … (4) 

where 2θ is taken to be constant. h is the constant of integration. 

3. Equilibrium solution of the problem 

 The equilibrium positions of the system are given by the constant values 
of the co-ordinates in the rotating frame of reference. 

Let 1XX = =constant, 1YY = =constant  … (5) 
give the equilibrium positions.  

With the help of (5), we write the set of equations (1) as 

 
 

and  

 … (6) 

The presence of the perturbative term due to solar pressure clearly 
indicates that none of the co-ordinates of the equilibrium point may be taken 

to be zero unless  But these parameters cannot be zero. 

In addition to this, we are interested only to get the maximum effect of the 
earth's shadow on the motion of the system. Therefore, we put 0∈= and 

0=α in equation (6).  By doing so, we get 
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and 

 … (7) 

All the two equations in (7) are independent of each other. 

 From (7), we get the equilibrium position as 

 … (8) 

4. Stability of the equilibrium position 

 Liapunov’s  theorem10 is applied to test the stability of the equilibrium 
position given by (8). 

Let us assume that there are small variations in the co-ordinates at the 
given equilibrium position denoted by δ1  and δ2, then 

     10 δ+= XX , 20 δ+= YY  

 '' 1δ=∴ X  2' δ ′=Y    

 "" 1δ=∴ X  2" δ ′′=Y  …   (9) 
Using (9) in the equations (1), a set of variational equations comes to the 

form 

21 2δδ ′−′′  

and 

 … (10) 

where 0∈= and 0∝= . 
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As the original equations (1) admit Jacobian integral, the variational 
equations of motion (10) will also admit Jacobian integral. 

Multiplying the first and second equations of (10) by '2 1δ and '2 2δ
respectively, adding them and then integrating the final equation, we get the 
Jacobian integral at the equilibrium position as  

 

 

 … (11)

 

1h   is the constant of integration at the equilibrium position. 

To test the stability in the sense of Liapunov7, Jacobian integral is taken 
as Liapunov's function 

 L ( )2121 ,,',' δδδδ  as  

 

 
  … (12) 
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5. Results and discussion 
We take L as Liapunov's function. As L is the integral of the system of 

variational equations (10), its differential taken along the trajectory of the 
system must vanish identically. Hence, only condition that the unperturbed 
position be stable in the sense of Liapunov is that L must be positive 
definite. For making the function (12), a positive definite function, it is 
necessary that the function does not have terms of first order in the variables 
whereas the terms of the second order must satisfy the Sylvestor's conditions 
for positive definiteness of quadrative forms. Hence, the sufficient 
conditions for the stability of the system at the equilibrium position are 

(i)  

(ii)    

 

(iii)     

  …  (13) 

6. Conclusion 

Conditions (13) are analyzed separately. Here, all the three conditions for 
stability of the equilibrium position are not identically satisfied 
simultaneously. Hence, the equilibrium position is unstable in the sense of 
Liapunov. 
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[Abstract : Gravitation and cosmology have been considered in an anisotropic 
spacetime which is (α, β) – Finsler spacetime. In this background spacetime of our 
universe, the modified Einstein field equations have been constructed and these equations 
are found to be insensitive to the different connections of Finsler space. From the barotropic 
equation of state, with an introduction of a pressure from the anisotropic pressure 
components and anisotropic force, the equation for the scale factor of the expanding 
universe has been obtained. The late-time accelerated expansion of our universe has been 
obtained as the solution of this equation without introducing any dark energy.] 

1. Introduction 
One of the recent cosmological observations is the accelerated expansion 

of our universe. The standard model of cosmology, the ΛCDM cosmological 
model, which incorporates the cosmological constant  Λ  with the cold dark 
matter can successfully resolve this phenomenon. But it suffers from two 
major difficulties, namely, the cosmological constant problem and the 
cosmic coincidence problem. The first one is regarding extremely small 

current value of vacuum energy density 


 ≈∧= −
∧

4472 108 GeVGc πρ  in 

the scenario of field theory or string theory. On the other hand, the second 
problem is about too much closeness of density of matter with the vacuum 
energy density. Other alternative theories also include more peculiar dark 
energies (DE) but they suffer with similar difficulties1. With the 
modifications of Einstein – Hilbert action other modified gravity theories, 
such as, f(R) gravity, f(T) gravity, scalar tensor theories, Gauss-Bonnet 

mailto:ssddadai08@rediffmail.com
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gravity, avarHo  – Lifshitz gravity, nonlinear massive gravity, etc.2 have 
been proposed to resolve the phenomenon of accelerated expansion of the 
universe, but these models have no physical foundation, or, contain too 
many parameters. 

The standard model (ΛCDM model) is based on the important 
assumption which states that our universe is homogeneous and isotropic in 
character in the large scale apart from the said introduction of DE. But 
recent observational data of Planck Collaboration3 indicate some anomalous 
phenomena which are not in consistent with the basic assumption of  ΛCDM  
model (isotropy of spacetime). Some of these data which are particularly 
important point out hemispherical asymmetry and parity asymmetry. Also, 
other astronomical observations4 show a preferred direction in the galactic 
coordinate system for the maximum acceleration of the universe, and also, 
variation of fine structure constant at large scales. All these observational 
facts clearly indicate that our universe has a preferred direction which 
means that the background spacetime of the universe is anisotropic in 
nature. Therefore, gravitational behavior and cosmology should be 
considered in a spacetime which is inherently anisotropic. 

Finsler spacetime is a spacetime that breaks the isotropic symmetry of the 
Riemannian spacetime or that of FRW background spacetime in the case of 
cosmological consideration. Finsler geometry is a generalization of 
Riemannian geometry and it was, in fact, suggested by Riemann himself5 in 
1854. It was later developed by Paul Finsler6 in 1918. Presently, cosmology 
in a particular Finsler spacetime will be explored by constructing 
gravitational field equations in that spacetime, without introducing any DE. 

This paper is organized as follows. In section 2, we shall give a brief 
introduction of Finsler geometry. In section 3, a particularly relevant Finsler 
space is introduced as the background spacetime of the universe. The killing 
equation in this Finsler space has been obtained by using isometric 
transformation of structure. It was shown there that the symmetry of 
Riemannian space has been broken in this spacetime. In the subsequent 
sections 4 and 5, gravitational field equations in Finsler spacetime have 
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been obtained. With an equation of state, the solution for the scale factor 
which can explain the accelerated expansion of the universe has been found. 
In section 6, some concluding remarks have been made. 

2.  Finsler space 

In 1854, Riemann5 suggested that the positive nth root of a nth order 
differential form might serve as a metric function. In particular, the positive 
4th root of a 4th order differential form can be taken as the distance element 
between two neighboring points, i.e.,   

 
σρυµ

µυρσ dxdxdxdxxgds )(4 =  … (1) 

Now, for the displacement along the connecting curve γ (s) with tangent 

ds
dxy

µ
µ = , one can write Eq. (1) as  

 
σρυµ

µυρσ yyyyxgF )(4
)4( =  … (2) 

where  4
)4(F  is homogeneous of fourth order in yµ’s.  

From (2), it follows that 
 υµ

µυ yyyxGF ),(4
)4( =  

where  Gµυ (x, y) = υρ
µυρσ yyxg )(   is now a homogeneous function of 

second order in yµ,s, and if it is written as Gµυ (x, y) = gµυ (x, y) F(2)(x, y) 
where F(2)(x, y) is homogeneous of second order and gµυ (x, y) is a zero order 
homogeneous function in yµ;  we have  

 υµ
µυ yyyxgyxF

F
F

),(),(2

)2(

4
)4( =≡  … (3) 

where F(x, y) is now homogeneous of first order in yµ,s. In this way we 
arrive at the fundamental function F(x, y) representing Finsler structure. Its 
dependence on the position coordinates  xµ  and to the fiber coordinates yµ 
indicates that the geometry of Finsler space is a geometry on the tangent 
bundle TM. The position dependence of Riemannian geometry is here 
replaced by the pair (xµ, yµ), known as element of support, xµ being the 
coordinates of base manifold M. In physical applications, the fiber 
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coordinates yµ are interpreted as internal variable, cosmic flow line, velocity 
of the observer etc. 

The above gµυ (x, y) is not, in general, the Finsler metric tensor, but 
simply represents a homogeneous tensor of degree zero for defining F. In 
fact, the metric tensor of Finsler space is defined as  

 0,
2
1),(

22

≠
∂∂

∂= µ
υµµυ y

yy
Fyxg  … (4) 

and, we can then arrive at the relation (3) for the Finsler structure F having 
the property : 

 F(x, λy) = λ F(x, y)  for  all  λ > 0 … (5) 
It should be noted that the distance element ds is given by 
 ds = F(x, dx) … (6) 
Consequently, the distance traversed on the base manifold along a 

direction yµ is given by the integral 
 I = ∫ F(x, y) ds … (7) 

and geodesic equation for Finsler space can be obtained by applying the 
principle of least action on this integral. It is given by 

 022

2

=+ µ
µ

G
ds

xd  … (8) 

where Gµ  is called spray coefficients of Finsler space, is given by7 

 





∂
∂−

∂∂
∂= υ

λ
υλ

µυµ

x
Fy

yx
FgG

222

4
1  … (9) 

The geodesic equation (8) ensures that the Finslerian structure F is 
constant along the geodesic. 

3.  A Finsler space as background spacetime of universe 
We here introduce the following Finslerian structure F for the 

background spacetime of our universe. 
 F2 = yt yt – R2(t) yr yr – r2 R2(t) 2F (θ, φ, yθ, yφ) … (10) 
Here,  2F  is proposed to be of the form : 
 2F = yθ yθ + f (θ, φ) yφ yφ … (11) 
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F  can be regarded as the Finsler structure of the two dimensional Finsler 
space. The metric tensors for the Finsler space8 are given by 

 





==

),(
1,1and)),(,1(

φθ
φθ

f
diaggfdiagg ij

ij  … (12) 

  [i, j = 2, 3  or,  θ, φ] 
The geodesic spray coefficients calculated from the Finsler structure  F  

are 

 φφ

θ
yyfG

∂
∂−=

4
12  … (13a) 

 





∂
∂+

∂
∂= φφφθ

φθ
yyfyyf

f
G 2

4
13  … (13b) 

In order to consider gravitation, we require a geometrical quantity which 
is the Ricci scalar. In Finsler geometry there is geometrically invariant Ricci 
scalar. This is given by7 







∂
∂

∂
∂−

∂∂
∂+

∂∂
∂−

∂
∂=≡ µ

λ

λ

µ

µλ

µ
λ

µλ

µ
λ

µ

µ
µ
µ y

G
y
G

yy
GG

yx
Gy

x
G

F
RRic

22

2 221  … (14) 

where   

2F
yyRR ρλµ

λυρ
µ

υ =  … (15) 

It is to be noted that although µ
λυρR depends on connections, µ

υR does 
not. Consequently, the Ricci scalar depends only on the Finsler structure F, 
and is insensitive to connections, such as Chern connection, Cartan 
connection, ect. In fact, in Finsler gravity the vacuum field equation is given 
by Ric = 0. 

Now, for Finsler structure  F , the Ricci scalar Ric  can be found as 

( )φφθθ

θθ
yyfyyf

f
f

f
RicF +




















∂
∂+

∂
∂−=

2

22

2
2

4
1

2
1







∂
∂

∂
∂+

φθ
φθ ff

f
yy 2

1

  

 
… (16) 

The coefficient of yθ yφ is zero if  f  is independent  of φ,  i.e.,  
 f (θ, φ) = f (θ) … (17) 
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We have in this case, 

 
2

22

2

4
1

2
1








∂
∂+

∂
∂−=

θθ
f

f
f

f
Ric  … (18) 

For the constant flag curvature, that is, for λ=Ric , where  λ is a 
constant, we have the following equation for specification of the function : 

 λ
θθ

=






∂
∂+

∂
∂−

2

22

2

4
1

2
1 f

f
f

f
 … (19) 

In more general case  λ  may be taken as a function of  θ. For  λ=Ric , 
one can find the Finsler structure  F  as 

     yθ yθ + A sin2 ( )θλ  yφ yφ , if   λ > 0 

 =2F  yθ yθ + Aθ2 yφ yφ ,  if   λ = 0 … (20) 

 yθ yθ + A sinh2 ( )θλ−  yφ yφ , if   λ < 0 

The constant  A  may be taken as unity without any loss of generality. 
Thus, for the case of  λ > 0, we have following form of the Finsler 

structure (10) : 
 F2 = α2 + r2 R2(t) χ (θ) yφ yφ  … (21) 

where   χ(θ) = sin2 θ  – sin2 ( )θλ  … (22) 
and  α  is a Riemannian metric, which is given by 

 α2 = yt yt – R2(t) yr yr – r2 R2(t) (yθ yθ + sin2θ yφ yφ ) … (23) 
We can also write the Finsler structure (21) as 

 F = α φ(s) ,       φ(s) = 21 s+  … (24) 

where 
( )

α
β

α

φ
φ ==

yb
s  … (25) 

with bµ = (0, 0, 0, bφ),      bφ = r R(t) )(θχ  

 β = bµ yµ = bφ yφ  is an one form. 
The relation (24) shows that F is the metric function of (α, β)-Finsler 

space. 
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We, now, write the Killing equation  KV (F) = 0 in Finsler space by using 
isometric transformations of Finsler structure as9 

 0)()()()()( =
∂

∂+






∂
∂− βφαφφ VV K

s
sK

s
sss  … (26) 

where  ( ) υµ
µυυµα

α yyVVKV //2
1)( +=  … (27) 

 υ
υ

µ

µµ
υµβ y

x
Vb

x
bVKV 





∂
∂+

∂
∂=)(  … (28) 

The symbol “” means the covariant derivative with respect to the 
Riemannian metric α. From these equations it follows that 

 KV (α) + s KV (β) = 0     or,    α KV (α) + βKV (β) = 0. 

Consequently, we have 

 KV (α) = 0     and    KV (β) = 0 … (29) 
or, 

 Vµ/υ + Vυ/µ = 0 … (30) 

and 0=
∂
∂+

∂
∂

υ

µ

µµ
υµ

x
Vb

x
bV  … (31) 

Here, the second Killing equation constrains the first one which is the 

Killing equation of the Riemannian space. This is responsible for breaking 

the symmetry (isometric) of the Riemannian space. 

It is here to be noted that the present Finsler space (for the case F2 as 

quadric in yθ and yφ) can be obtained from a Riemannian manifold (M, 

gµυ(x)) as we have  

 υµ
µυ yyxgyxF )(),( =  … (32) 
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4.   Gravitational field equations 

We have pointed out that the two dimensional Finsler space F  has been 

specified as a constant  flag curvature space as it was assumed λ=Ric . This 
flag curvature of Finsler space is, in fact, the generalization of the sectional 
curvature of Riemannian space. However, for more general case, the Finsler 
space is specified by θ-dependent flag curvature. But presently our Finsler 
space (10) is specified with the real valued constant flag curvature  λ. For 
the case λ = 1 we get the usual FRW universe. 

The geodesic spray coefficients for the present Finsler space can be 
found as 

 
[ ]rrt yyFraG +′= 22

4
1  … (33) 

[Here, we write R2 = a for convenience, and prime indicates the 
derivative with respect to time] 

 
[ ]2

2
1 Faryya
a

G trr −′=  … (34) 

 




 ′

++= tr y
a

ay
r

yGG
2

1θθθ  … (35) 

 




 ′

++= tr y
a

ay
r

yGG
2

1φφφ  … (36) 

With these spray coefficients, the Ricci scalar can be computed as 






 ′
+′′+














 ′
+′′+−=

a
aayy

a
aarRicFRicF rr

2
)(

2
1

2
)(

2
1

222
22






 ′
−

′′
− 2

2

2
)(

2
3

a
a

a
ayy tt   

 … (37) 
As there are different types of connections in Finsler geometry compared 

to only one torsion free connection in Riemannian geometry (the Christoffel 
connection), different approaches are prevalent in constructing gravitational 
field equations in Finsler space. As the result, these equations are not 
equivalent to each other. But we shall here follow the notion of Ricci tensor 
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in Finsler geometry, that was first introduced by Akbar-Zadeh10, and 
construct the field equations in Finsler space following Li Xin, et al8. In 
these, Ricci tensor is constructed from the Ricci scalar, Ric, which is 
insensitive to connections. It is given by 

 
υµµυ yy

RicF
Ric

∂∂






∂

=

22

2
1

 … (38) 

The scalar curvature in Finsler geometry is given as 
 S = gµυ Ricµυ … (39) 

and for the present Finsler geometry, it is found to be 

 ( )
ara

aS 2
123 −−

′′
−= λ  … (40) 

The modified Einstein tensor in Finsler spacetime, 

 SgRicG µυµυµυ 2
1−≡  … (41) 

yields 

 ara
aGt

t 22

2 1
4

)(3 −+
′

= λ  … (42) 

 ara
a

a
aGr

r 22

2 1
4

)( −+
′

−
′′

= λ  … (43) 

 
2

2

4
)(

a
a

a
aGG

′
−

′′
== φ

φ
θ
θ  … (44) 

Now, let us assume the general energy-momentum tensor 

 ( ) ( ) υ
µµ

υυ
µµ

υ ηηρ trtt ppgpuupT −+−+=  … (45) 

where  uµ yµ =  – ηµ ηµ = 1, pr, pt  are respectively denote the pressures 
of the anisotropic fluid in the radial and transversal directions. 
Consequently, the modified gravitational field equations in Finsler 
spacetime are obtained (in terms of scale factor R(t)) as 

 222

2 138
RrR

RGF
−+= λρπ



 … (46) 
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 222

2 128
RrR

R
R
RGprF

−−−−= λπ


 … (47) 

 2

228
R
R

R
RGprF



−−=π  … (48) 

It should be noted that for λ = 1, pr = pt, and we recover the gravitational 
field equations for flat FRW universe. On the other hand, if we put pr = pt in 
the above field equations, we readily find λ = 1. Hence, we find λ = 1 
corresponds FRW universe and vice versa. Here, to denote the volume of F  
we have used7 4πF. Also, in deducing the above gravitational field equations 
in Finsler spacetime, we have used the following proposal by Li, et al8. It is 
given by  

 ( ) 08 / =−
M

TGG F
µ

υ
µ

υ π  … (49) 

where ‘M’ means that the gravitational field equation (49) restricted to 
base space M. It was argued there that the above field equation is insensitive 
to connections. Also, this field equation could be derived approximately 
from the formation of Pfeifer, et al11, who have constructed gravitational 
dynamics for Finsler spacetimes in terms of an action integral on the unit 
tangent bundle. The base manifold of the Finsler space, thus, regulates the 
gravitational field equation in Finsler space, and the fiber coordinates yµ 
play the role of the velocities of the cosmic components, that is, the fluid 
velocities in the energy momentum tensor. Again, as pointed out earlier, our 
Finsler spacetime can be regarded as a Riemannian manifold with metric 
(32). Therefore, one can proceed to find the Einstein gravitational field 
equations using the usual Christoffel connection of Riemann geometry. The 
metric gµυ is given as 

 )sin)(),(,1( 2222 θλµυ tRrtRdiagg −−=  … (50) 

The field equations obtained in this usual way can be found to be the 
same as those given in (46), (47) and (48). Thus, in our case of background 
spacetime of the universe, the gravitational field equations are exact. 
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5.   Accelerating universe 
We propose a pressure P composed from the pressure components pr, pt 

and an anisotropic pressure due to the anisotropic force r3Fa where 
( )

r
ppF rt

a
−= 2 . With this pressure P, we can impose barotropic equation 

of state 
 P = ωρ … (51) 

where the pressure P is taken as 

 ( ) art FrmppP
2

1
32

+−+= ωω  … (52) 

Here,  m  is an arbitrary constant whose dimension is that of mass (in the 
natural unit 1== c ). We can take m = 1, or in the case of no contribution 
of anisotropic force to the pressure, it can take the value zero, i.e., m = 0. 
Regarding the pressure P as given in (52), we can say that a pressure for an 
imperfect fluid is defined as the negative of average of the normal stresses 
in three orthogonal directions. As the pressure in a direction is the negative 
of the normal stress in that direction, we have 

 ( ) trttr pppppP
3
2

3
1

3
1 +=++=  … (53) 

This pressure is, in fact, a special case for the pressure in the relation 

(52), with 
3
1−=ω , m = 0. By using the field equations (46), (47) and (48), 

this pressure in (53) gives rise to the usual energy conservation equation for 
the homogeneous and isotropic universe, that is 

 0)(3 =++
∂
∂ PH

t
ρρ  … (54) 

together with a relation 

 aF
r

−=
∂
∂ρ  … (55) 

Obviously the pressure P plays the role of an effective pressure. These 
two equations (54) and (55) give the energy conservation equation as 

 d (ρ V) =  – P dV – V Fa dr … (56) 
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The general expression for the pressure in (52) consists of the weighted 

average of the pressure components pt and pr, and the contribution from the 
anisotropic force 

Now, by using the barotropic equation of state (51) with pressure in (52), 
we have from the field equations (46), (47), (48) of Finsler spacetime, the 
following equation for the scale factor R(t) : 

 0
2

)1(
2
31 22

=−−++
R

m
R
RR λω 

  … (57) 

It is to be noted that the term λ plays a crucial role in the field equations 
in Finsler space and, in fact, it arises from the anisotropic nature of the 
Finsler geometry itself. 

We can find the solution for the scale factor R(t) for different values of 
ω. For the dust case (ω = 0) of the universe, a solution of the equation (57) 
can be found as 

 R(t) = At … (58) 
where A is a constant. This scale factor corresponds to the mild inflation as 
considered by De11 for the very early universe in its particle creation era. On 
the other hand for ω = – 1, the above equation (57) becomes 

 { }CR
R

R += 21
  … (59) 

where 

 
2

)1(2 −= λmC  

The solution can readily found to be as follows : 

 kt
k

RktRtR sinh)0(cosh)0()(


+=  … (60) 

where 

 
)0(

2
)1()0(

2

2
2

2

R

mR
k

−+
=

λ


 … (61) 
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Here, R(0) and )0(R  are uncorrelated initial values of R(t) and )(tR  

respectively. At late times 




 >>

k
t 1 , we have 

 ktkt ee
k

RRtR α








+= )0()0(
2
1)(



 … (62) 

which leads to accelerated expansion of the universe. 

6. Concluding remarks 
We have considered here the gravitation and cosmology in an anisotropic 

spacetime which is a special type of Finsler space. The modified Einstein 
field equations have constructed and these equations are insensitive to the 
connections of Finsler geometry. In constructing them, we have followed 
the proposal of Li, et al8 for the gravitational field equations restricted to the 
base space. There it was shown that such consideration is an approximation 
of the general formalion of Pfeifer, et al10. But, in our cases these equations 
are exact as they can be derived from the Riemannian spacetime equivalent 
to the special type (α, β)-Finsler space for the background spacetime of our 
universe. 

The noteworthy fact is that a parameter λ arises in the gravitational field 
equations as well as in the equation which determines the scale factor for 
expansion of the universe. This parameter can be regarded as the measure of 
anisotropy of the Finsler spacetime which is anisotropic in nature. This 
parameter plays an important role in determining the “late time” when 
universe can have accelerated expansion. Also, there are solutions of the 
equation (57), which represent nonsingular universe. Presently, we have 
found an accelerated universe expansion without introducing any dark 
energy. 
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[Abstract: Self-preserving solutions of spectral equation governing the decay of 
turbulence energy spectrum in a particle- ladden homogeneous isotropic turbulent flow are 
obtained for the case of large Reynolds number. Asymptotic behaviour of such solutions for 
small and large values of wave number k are discussed.] 

1. Introduction 

In recent times much attention is paid to the prediction of particle-ladden 
turbulent flows as they occur in many technologically important areas. 
Research interest in these flows are generally two–fold e.g., Islam and 
Mazumdar1  considered the effect of turbulence on the particle concentration 
field and the modification of turbulence by the particles. We shall be 
concerned here with certain aspect of the problem how turbulence is 
modified by the particles when they are present in the flow in large enough 
concentration (Squares and Eaton2). 

Theoretical investigations were carried out in this area by Tchen3, Meck 
and Jones4, Reeks5, Nir and Pismen6 and others. Most of these works 
involve studies of the influence of particle inertia on the turbulent dispersion 

mailto:sksaha30@gmail.com
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process. General  confirmations of the conclusions made in these studies, 
were obtained from the experiments (Wells and Stock7, Snyder and 
Lumley8). Reeks9, Elghobashi and Truesdell10, Yeung and Pope11   and 
Squares and Eaton2 have carried out numerical simulation of particle-ladden 
turbulent flows. It is difficult to make proper interpretations of the 
experimental data as they are valid only for the conditions of the experiment 
and can not be generalized (Elghobashi and Truesdell12). For example, when 
fine droplets (or particles) of diameters ≤250μ are injected in a free turbulent 
jet, the turbulent intensity decreases, lowering the spreading rate of the half 
width of the jet, whereas the addition of the large particles of diameters  
≥ 500μ causes an increase in the turbulent intensity. Hardalupas, et al13 
observed opposite phenomena in their experimental investigation on a 
particle-ladden turbulent flow. 

Rao14 studied the final period decay of energy spectrum of a particle-
ladden homogeneous isotropic turbulence by a similarity process. In the 
present paper an attempt is made to examine the similarity features of the 
decay of turbulence kinetic energy spectrum in a particle-ladden 
homogeneous isotropic turbulent flow. We shall assume that the size of the 
particles is sufficiently large so that the turbulence is attenuated by the 
dispersed phase. 

2. Formulation of the problem 
The spectral equation governing the decay of turbulence kinetic energy in 

a particle-ladden homogeneous isotropic turbulent flow, is given by (Baw 
and Peskin15, Tsuji16) 

  … (1) 

where k is the wave number, ν is the kinematic viscosity, τ is the 
characteristic time = 2

9
𝜌𝜌𝑠𝑠𝜎𝜎2

𝜇𝜇
, 𝜌𝜌𝑠𝑠 is the density of the solid material , σ is the 

radius of the particle, μ is the co-efficient of viscosity, β = 𝜌𝜌𝑝𝑝
𝜌𝜌𝜌𝜌

, 𝜌𝜌𝑝𝑝  is the 
volume concentration of the solid  phase in the flow, ρ is the density of the 
gas.  
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E(k, t) = 2𝜋𝜋𝑘𝑘2𝜑𝜑𝑖𝑖𝑖𝑖 (k, t), 𝜑𝜑𝑖𝑖𝑖𝑖 (k, t) being the Fourier transform of  𝑣𝑣𝑖𝑖𝑣𝑣′𝑖𝑖  ������, the 
correlation between the fluctuating gas velocity components  𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑖𝑖′  
pertaining to the points P(�⃗�𝑋) and P’(�⃗�𝑋) inside the flow field;  

T(k, t) = 2π𝑘𝑘2 Γ𝑖𝑖𝑖𝑖 (k, t) , Γ𝑖𝑖𝑖𝑖 (k, t) is the Fourier transform of  
𝜕𝜕
𝜕𝜕𝑟𝑟𝑘𝑘

( 𝑣𝑣𝑖𝑖𝑣𝑣𝑘𝑘𝑣𝑣𝑖𝑖′��������  -   𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖′𝑣𝑣𝑘𝑘′��������� ), 𝑟𝑟  = 𝑋𝑋′���⃗  - �⃗�𝑋.   

The term on the left hand side of (1), describes the rate at which 
turbulence kinetic energy changes. The first term on the right hand side of 
(1) represents the transfer of kinetic energy at the wave number k due to 
turbulence self interactions. The second term describes the dissipation of 
turbulence kinetic energy due to the effects of molecular viscosity. The third 
term takes account of the effect due to the presence of particles, which are 
so massive that they are unaffected by the gas turbulent fluctuations 
(Wallace17). In the next section we seek self-preserving solution of  
equation (1). 

3. Self-preserving solution for the turbulence energy spectrum  

In order to solve equation (1), the energy transfer spectrum T(k, t) is to be 
modeled. We accept the local form for T(k, t), as suggested by A. M. 
Obukhov18, e.g.,  

 , … (2) 

where 𝛾𝛾2 is a  non-dimensional constant. 
Substituting (2) in (1) we obtain  

 

                    … (3) 

Based on the assumption that particles are essentially unaffected by the 
turbulence fluctuations, we may set  

  … (4) 

It is to be remarked that when the condition (4) is satisfied, for every high 
frequency fluctuations of gas, gas-solid velocity correlations are negligible 
as the response time of the particle is sufficiently long (Wallace17). 
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In view of the relation (4), the equation (3) is reducible to 

 
                  … (5) 

We seek a general type of self-preserving solution of (5) in the form 
(Sen19) 

  … (6) 

where α, 𝑘𝑘0 , 𝑡𝑡0 are constants, τ = 𝑡𝑡
𝑡𝑡0

. 
Substituting (6) in (5) we obtain after simplifications 

 
                                 … (7) 

where 

 x = 𝑠𝑠𝑘𝑘
𝑘𝑘0

, Re = Reynolds number = 
1

𝜈𝜈𝑘𝑘0
2𝑡𝑡0

,  c = 
𝜌𝜌𝑠𝑠𝜌𝜌
𝑠𝑠

,  𝑠𝑠𝜌𝜌  = 
𝜕𝜕𝑠𝑠
𝜕𝜕𝜌𝜌

. 

If we take c = 1
2
, the equation (7) is transformed to  

 

                                 … (8) 

where 

  
Clearly equation (8) may admit self-preserving solution for different 

choices of MA  if R =  𝜀𝜀𝑡𝑡
2

𝜈𝜈
 remains constant during decay process. Usually,  

R = constant applies to the wave number range of the energy containing 
eddies and it need not apply to equilibrium range of wave number. In order 
to describe the self-preserving features of the turbulence energy spectrum, 
Heisenberg20 assumed that the energy containing eddies would be in quasi- 
equilibrium, so that we may consider them as if they are in equilibrium as 
far as possible in view of their finite rate of decay (Hinze21). We accept this 
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premise  for our analysis of the present case. Let us discuss asymptotic 
behaviour of f(x) for the cases (i) x → 0 and (ii) x→∞, when turbulence is 
characterized by very large Reynolds number Re → ∞. 

Case I:  Let  

f(x) ~B𝑥𝑥𝑛𝑛  as x → 0;  … (9) 
B is a non-zero constant and n > 0.  

Substituting (9) in equation (8), we obtain, after some calculation, 

 … (10) 

 As n>0 and x → 0, it is easily seen that the first term of (10) is 
significant. Equating to zero the co-efficient of 𝑥𝑥𝑛𝑛 , we obtain  

  … (11) 

The family of solutions  given in (6) have the asymptotic behavior 

  … (12) 

For c = 1
2
, (12) gives 

 f(x) ~ 𝑥𝑥1−4𝑀𝑀𝑀𝑀√𝑅𝑅, (x→0), for  MA√R < 1
4
, … (13)   

which correspondsto the Heisenberg’s type sprectrum law  

 E(k, t) ~  𝑘𝑘1−4𝑀𝑀𝑀𝑀√𝑅𝑅, (k→0), for  MA√R < 1
4
. … (14)    

 For c = 2
5
, (12) gives 

 f(x) ~ 𝑥𝑥2−5𝑀𝑀𝑀𝑀√𝑅𝑅, (x→0), for  MA√R < 2
5
, … (15)   

which corresponds to the sprectrum law  

 E(k, t) ~  𝑘𝑘2−5𝑀𝑀𝑀𝑀√𝑅𝑅, (k→0), for  MA√R < 2
5
. … (16)    

Again for c = 1
3
, (12) gives 

 f(x) ~ 𝑥𝑥3−6𝑀𝑀𝑀𝑀√𝑅𝑅, (x→0), for  MA√R < 1
2
, … (17)   

which corresponds to the sprectrum law 
 E(k, t) ~  𝑘𝑘3−6𝑀𝑀𝑀𝑀√𝑅𝑅, (k→0), for  MA√R < 1

2
. … (18)    
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Further if we put  c = 2
7
, in (12) we obtain 

 f(x) ~ 𝑥𝑥4−7𝑀𝑀𝑀𝑀√𝑅𝑅, (x→0), for  MA√R < 4
7
, … (19)    

which corresponds to the Loitsiansky type sprectrum law 

 E(k, t) ~  𝑘𝑘4−7𝑀𝑀𝑀𝑀√𝑅𝑅, (k→0), for  MA√R < 4
7
. … (20)    

The constant of proportionality being Loitsiansky’s constant if MA = 0 
(cf. Loitsiansky22, Lin23 and Batcheler24).  

Case II:   Let 
f(x) ~ B’𝑥𝑥−𝑛𝑛  as x → ∞;  … (21) 

B’ is a non-zero constant and n > 0.  

Taking (21) into account, equation (8) is reducible to  
[(3c−2) – nc + 2MA√R]𝑥𝑥−𝑛𝑛  − 

𝛾𝛾2√𝐵𝐵 ′
𝛼𝛼(1−𝑛𝑛)√(3−𝑛𝑛)

(5 – 3n)𝑥𝑥
−3𝑛𝑛+3

2    =0. … (22)   

It can be easily seen that the second term on the left hand side of (22) is 
predominant if n < 3 and n ≠ 1. Accepting this we equate the co-efficient of 

𝑥𝑥
3(1−𝑛𝑛 )

2  to zero and obtain n = 5
3
 . Thus in the case when the turbulence is 

characterised by sufficiently large Reynolds number the asymptotic 
behaviour  of f(x) as x→ ∞ is given by 

 f(x) ~ 𝑥𝑥−
5
3. … (23)   

This gives  
 E(k, t) ~  𝑘𝑘−

5
3 ; (k → ∞). … (24)   

4. Conclusion 
In the above sections we have carried out the method on the assumption 

of modified Obukhov form for energy transfer through a homogeneous  
isotropic particle-ladden turbulent  flow. It is shown that such calculations 
are valid for the  asymptotic behaviour of energy spectrum E(k, t) for  wave 
numbers k→0 and k→∞. The results clearly show that the self-preserving 

solutions are admitted for different values of MA (M = 
𝜌𝜌𝑝𝑝
𝜌𝜌

 ,  A =  
1
𝜌𝜌
√𝜈𝜈
𝜀𝜀
  ) and  

R (= 𝜀𝜀𝑡𝑡
2

𝜈𝜈
) during the process of decay. Surprisingly it is observable that 
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several power laws exhibited by the energy spectra  for different values of 
MA√R which are  in turn dependent  on the choice of the parameter c  and 
finally all the energy spectra behaving so differently for small values  of  

k → 0 ultimately merge to the energy spectrum E(k, t) ~  𝑘𝑘−
5
3 ; (k → ∞). 
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1. Introduction 
Thermoluminescence (TL) is a form of luminescence which is exhibited 

by some insulating or semiconducting solids after being irradiated with 
some ionizing radiations such as 𝑋𝑋-rays, γ-rays β-rays etc. TL has got 
important applications in the field of radiation dosimetry, dating and defect 
studies of solids1. In a simple kinetic order (KO) model the parameters such 
as activation energy (𝐸𝐸), frequency factor (𝑠𝑠) and order of kinetics (𝑏𝑏) are 
used to explain the TL phenomenon. 
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In KO model by convention the frequency factor is considered to be 
independent of temperature (𝑇𝑇) but the detailed theoretical analysis points 
towards the dependence of frequency factor with temperature of the type2-4.  

 … (1) 

where S0 is a constant and  𝑎𝑎 is the temperature exponent.  
Kirsh5 suggested a method for the simultaneous determination of order of 

kinetics and activation energy of TL peak. The suitability of this method for 
the case of temperature independent frequency factor has been demonstrated 
by Karmakar et al6. In the present work we have assessed the acceptability 
of Kirsh method to determine 𝐸𝐸 and 𝑏𝑏 in the context of dependence of 𝑠𝑠 on 
temperature in TL. 

2. Methodology 

By considering the temperature dependence of 𝑠𝑠 in TL the expression for 
TL intensity as a function of absolute temperature T for a first order TL peak 
(𝑏𝑏 = 1) is given by7 

 … (2) 

With the corresponding maximum condition 

 … (3) 

Similarly the TL intensity for a non 1st order TL peak (b ≠ 1) can be 
expressed as 7  

 … (4) 

and the peak temperature 𝑇𝑇𝑚𝑚   can be obtained from the equation  

 
  … (5) 

where the symbols have their usual meanings7.  
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According to Kirsh5  depends linearly on ∆ ln(1/𝑇𝑇) with 

gradient – (𝐸𝐸/𝑘𝑘) and intercept 𝑏𝑏. The difference between the values of any 
quantity such as 𝐼𝐼 corresponding to two nearby points of the glow curve is 
denoted by ∆. So Kirsh method allows simultaneous evaluation of 𝐸𝐸 and 𝑏𝑏.  

3.Results and discussions 

The evaluation of the integral ∫ 𝑇𝑇 ,𝑎𝑎exp(− 𝐸𝐸
𝐾𝐾𝑇𝑇

)𝑇𝑇
T0

𝑑𝑑𝑇𝑇 occurring in 

equations (2), (4) and (5) have been carried out by following the technique 
proposed by Singh et al8 . The area of the TL peak between any two 
temperatures has been obtained by using Simpson 1/3rd rule9. In figures 1 
and 2 we show some TL peaks with temperature dependent frequency factor 

as reported by Fleming7 for 𝑎𝑎 =  2 and 𝑎𝑎 = −2.  𝐼𝐼
𝐼𝐼𝑚𝑚

 is the fractional 

intensity and 𝐼𝐼𝑚𝑚 is the peak intensity. In the process of computation we have 
found that the value of 𝑠𝑠0 as reported by Fleming will be 55.96 instead of 
25.46 for 𝐸𝐸 = 1.303 eV, 𝑎𝑎 = 2, 𝑇𝑇𝑚𝑚= 595𝐾𝐾 and β = 0.42𝐾𝐾𝑠𝑠−1. It is to be 

noted that the symmetry factor 𝜇𝜇𝑔𝑔= δ
ω
  ω = (T2 ˗ T1),  

T1 and T2  and ω =  (𝑇𝑇2  − 𝑇𝑇1), 𝑇𝑇1and 𝑇𝑇2   are half intensity temperatures in 
the rising and falling sides of the peak]. For the first order TL peaks shown 
in figures (1𝑎𝑎) and (1𝑏𝑏) for  𝑎𝑎 =  2 and 𝑎𝑎 = −2 are respectively 0.44 and 
0.45. Similarly for second order TL peaks shown in figures (2𝑎𝑎) and (2𝑏𝑏) 
for   𝑎𝑎 =  2 and 𝑎𝑎 = −2  𝜇𝜇𝑔𝑔values are nearly 0.52. This shows that the 
shape of the TL peaks depends weakly on temperature exponent 𝑎𝑎 (Chen 
and Kirsh10).  

The applicability of Kirsh method for the dependence of 𝑠𝑠 with 
temperature has been checked by applying it to a number of computer 
generated TL peaks for the non zero values of 𝑎𝑎. The results have been 
presented in Table 1. The values of 𝐸𝐸 and 𝑏𝑏 as calculated by Kirsh method 
are denoted respectively by EK and 𝑏𝑏𝐾𝐾. It is evident from Table 1 that the 
values of EK and 𝑏𝑏𝐾𝐾 apparently agree very well with corresponding input 
values of  Ein and 𝑏𝑏𝑖𝑖𝑖𝑖   of 𝐸𝐸 and 𝑏𝑏 respectively. This is illusory because it is 
not possible to estimate  𝑎𝑎 from TL data in isolation no matter how 
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extensive and varied this data may be7. The values 𝐸𝐸0 and 𝑏𝑏0 of 𝐸𝐸 and 𝑏𝑏 
have been computed for the case of zero temperature exponent of frequency 
factor for 𝑎𝑎 = 0 are presented in Table 1. The values of 𝐸𝐸0 and 𝑏𝑏0 in 
different cases differ from the input values of 𝐸𝐸𝑖𝑖𝑖𝑖  and 𝑏𝑏𝑖𝑖𝑖𝑖  of 𝐸𝐸 and 𝑏𝑏 as well 
as from 𝐸𝐸𝑘𝑘  and 𝑏𝑏𝑘𝑘  by an amount less than 10%. The amount of deviation of 
𝐸𝐸0 from the input value of 𝐸𝐸 agrees with the observations of Fleming7 and 
Chen and Kirsh10 for the case of peak shaped method 1. 

In order to check the suitability of our findings we consider two 
experimental TL peaks analyzed by Singh11. These are (i) completely 
isolated 593 K TL peak in bluish green microcline obtained by thermally 
cleaning lower temperature peaks by heating up to 563 K [Fig. 3] (ii) partly 
isolated 476 K TL peak of Norwegian orthoclase obtained by thermally 
cleaning lower temperature peaks up to 543 K [Fig. 4].  We have modified 
the curve fitting algorithm developed by Singh, et al12,13 including the 
temperature exponent 𝑎𝑎 as a parameter of  fitting. We have used the fitting 
functions suggested by Bhattacharya, et al14 for the case of temperature 
dependent frequency factor. The relevant parameter of fitting for 593 K 
peak of bluish microcline and 476 K peak of Norwegian orthoclase are 
presented in Table 2. It is to be noted that heating rates for both the peaks 
are 0.42 Ks-1. In Table 2 Ecf , bcf, scf  and 𝑎𝑎𝑐𝑐𝑐𝑐  are curve fitted values of 𝐸𝐸, 𝑏𝑏, 𝑠𝑠 
and 𝑎𝑎. In Table 2 we also depict the values of EK bK and sK as calculated by 
Kirsh method. It is evident from Table 2 that for both the peaks EK,  bK and 
sK are in good agreement with the values of the trapping parameters as 
calculated by the method of curve fitting.  

The goodness of fitting have been checked by computing the figure of 
merit (FOM) defined by15  

 …  (6) 

where 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 (𝑇𝑇𝑖𝑖) and 𝐼𝐼𝑐𝑐𝑖𝑖𝑓𝑓 (𝑇𝑇𝑖𝑖) are respectively the experimental and fitted 
values of TL intensity 𝐼𝐼 at temperature 𝑇𝑇𝑖𝑖 . The value of frequency factor sk 
as determined by Kirsh method can be evaluated by using the relation14  

 … (7) 
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where 𝑘𝑘 is the Boltzmann Constant and 𝑇𝑇𝑚𝑚  is the peak temperature. 𝑠𝑠𝐾𝐾 is the 
frequency factor as determined by the Kirsh method. The values of FOM 
presented in Table 2 also indicate a fairly good fit. 

Table  1 
Activation energies and orders of kinetics of some numerically 

computed peaks. 
Ein 

(eV) 
bin 

(S0)in 
(s-1K-a) a 𝐸𝐸𝐾𝐾  𝑏𝑏𝐾𝐾  𝐸𝐸0 𝑏𝑏0 

1.6 1 109 2 1.601 0.996 1.636 1.02 

1.6 2 109 2 1.601 1.99 1.636 2.04 

1.6 1 109 -2 1.600 1.03 1.564 0.98 
1.6 2 109 -2 1.601 2.07 1.562 2.05 
0.4 1 107 2 0.400 0.993 0.427 1.07 

0.4 2 107 2 0.400 1.99 0.427 2.10 

0.4 1 1011 -2 0.400 1.02 0.384 0.96 

0.4 2 1011 -2 0.400 2.03 0.382 2.09 
1.6 1.5 109 2 1.600 1.50 1.686 1.58 

1.6 1.5 109 -2 1.600 1.52 1.518 1.57 

0.4 1.5 107 2 0.400 1.50 0.418 1.56 

0.4 1.5 1011 -2 0.400 1.48 0.388 1.46 

Table 2 
Values of trapping parameters of some experimental TL peaks as 

calculated by the method of curve fitting and Kirsh method*. 

Peak 
Temperature 

Ecf 
(eV) 

bcf scf   
(sec-1) 

𝑎𝑎𝑐𝑐𝑐𝑐  𝐸𝐸𝐾𝐾 
(eV) 

𝑏𝑏𝐾𝐾 𝑠𝑠𝐾𝐾 
(sec-1) 

FOM 

593K 1.42 2 3.56(10) 0.0 1.40 2 3.70(10) 0.75 

476K 1.16 2 7.6(10) 0.0 1.13 2 7.9(10) 0.82 

*A(B) stands for A × 10B 
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 Fig. 1(a) Fig 1(b) 
 Computer generated TL peak for 𝑎𝑎 = 2, 𝐸𝐸 = 0.409 𝑒𝑒𝑒𝑒,  Computer generated TL peak for 𝑎𝑎 = −2,  𝐸𝐸 = 0.591 𝑒𝑒𝑒𝑒,  
 𝑇𝑇𝑚𝑚 =  580𝐾𝐾, 𝑏𝑏 = 1, β = 0.42 𝐾𝐾𝑠𝑠−1 𝑇𝑇𝑚𝑚 =  580𝐾𝐾, 𝑏𝑏 = 1, β = 0.42 𝐾𝐾𝑠𝑠−1 

  
  Fig. 2(a) Fig. 2(b) 

 Computer generated TL peak for 𝑎𝑎 = 2,  𝐸𝐸 = 1.303 𝑒𝑒𝑒𝑒,  Computer generated TL peak for 𝑎𝑎 = −2, 𝐸𝐸 = 1.497 𝑒𝑒𝑒𝑒, 

 𝑇𝑇𝑚𝑚 =  580𝐾𝐾, 𝑏𝑏 = 2, β = 0.42 𝐾𝐾𝑠𝑠−1 𝑇𝑇𝑚𝑚 =  595𝐾𝐾, 𝑏𝑏 = 2, β = 0.42 𝐾𝐾𝑠𝑠−1 

    
  Fig. 3 Fig. 4 

  Completely isolated 593 K experimental peak of Bluish Same as Fig. 3 but for partly isolated experimental 
 Green Microclene. Solid line denotes the experimental 476 K peak of Norewegian orthoclase. 
  peak. Dots denote the points corresponding to the 
  computer generated best fit peak. 
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4.  Conclusion 
In the present paper the suitability of Kirsh method for the simultaneous 

determination of 𝐸𝐸 and 𝑏𝑏 has been assessed by considering some computer 
generated and experimental TL peaks. It has been found that the method can 
be applied to TL peaks with temperature dependent frequency factor. It has 
also been observed that the maximum error in the determination of the 
activation energy by Kirsh method for the case of the temperature dependent 
frequency factor is of the order of 10%. It is also found that for 𝑎𝑎 =  2 the 
value of activation energy as calculated by Kirsh method is underestimated 
but for 𝑎𝑎 =  −2 it is over estimated. For the experimental TL peaks the 
errors in the activation energy as determined by Kirsh method are within the 
limits obtained for the computer generated peaks.  
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[Abstract : In this investigation flow of blood is discussed in a stenosed artery. Here the 
stenosis is considered as mild and axially symmetric. Blood is taken as an elastico-viscous 
fluid, also termed as Kuvshinski type fluid. The governing equations are made considering 
the visco-elastic parameter ( λ ) and an externally applied transverse magnetic field ( 0B ). 
The problem is solved analytically by the help of appropriate boundary conditions taking 
the slip velocity in effect. Mainly the nature of velocity of blood is discussed here under the 
influence of slipparameter (α ), visco-elastic parameter ( λ ) and the externally applied 
transverse magnetic field ( 0B ) and are depicted graphically.] 

Keywords : Kuvshinski type fluid, mild stenosis, visco-elastic parameter, slip 
parameter. 

1. Introduction 
Problems regarding blood flow in a stenosed artery are interesting as well 

as important in physiological and clinical fields. Due to the pumping action 
of heart a pressure gradient arises which gives rise to a type of oscillatory 
flow of blood through the arteries. This oscillatory flow depends on the 
number of physical parameters. Many researchers studied those kind of 
blood flow behaviors through the human arteries, considering blood as 
Newtonian as well as non-Newtonian fluids. 

Redaelli, A. et. al.1 studied the pulsatile flow of blood in arteries 
considering finite element simulations. Jung, H. et. al.2 considered blood as 
non-Newtonian fluid and discussed the flow in symmetric stenosed artery. 
Bhardwaj, K. et. al.3 discussed about oscillatory flow of blood in an artery 
with mild stenosis. Ponalgusammy, R.4 considered a two layered blood flow 
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model in an artery with stenosis and slip velocity. Sanyal, D. C. et. al.5 
studied the effect of magnetic field on pulsatile motion of blood in a circular 
tube in presence of periodic body acceleration. Rathod, V. P.6 worked on 
pulsatility of blood flow, taking blood as a couple stress fluid in presence of 
periodic body acceleration and external magnetic field through a porous 
medium. Kumar, S.7 studied the effect of body acceleration of blood flow 
when the stenosis is time dependent. Sanyal, D. C.8 considered stenosis as 
axi-symmetric and studied pulsatile motion of blood in presence of external 
magnetic field. Varshney, N. K. et. al.9 considered blood as couple stress 
MHD fluid in an inclined circular tube and studied pulsatile flow of blood 
with periodic body acceleration. Kumar, A. et. al.10 worked on the flow of 
blood taking blood as an elastico-viscous fluid with porous effect and 
periodic body acceleration. Tanwar, V. et. al.11 studied magnetic field effect 
on oscillating flow of blood in presence of mild stenosis. Mohan, V. et. al.12 
studied the effect of magnetic field taking blood as an elastic-viscous fluid 
in an artery with mild stenosis. 

In present article the slip flow of blood in the inner wall of an artery is 
taken into account. Effects of slip flow, elastico-viscous parameter and 
externally applied magnetic field on the pulsatile motion of blood are 
discussed and shown graphically. 

2. Mathematical formulation of the problem 
At first blood is considered as an elastic-viscous (Kuvshinski type) fluid. 

Furthermore blood is here assumed as viscous, incompressible in nature and 
its flow is assumed to be unsteady and axially symmetric. The density and 
viscosity of blood are taken as constant. The radius of artery is chosen as 
constant except the stenosed portion. In the lumen of the artery the growth 
of stenosis is assumed to be symmetrical. Geometry of the stenosis is 
represented in the following figure and formulated mathematically by 
equation (1). 

 
Fig. 1 

Geometry of the stenosis in the inner wall of an artery. 
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  … (1) 

here 0R  is the radius of undisturbed portion of the artery, ( )R z  is the radius 
of the artery in stenosed portion. 2d is the total length of the stenosis and ε  

is the maximum height of the stenosis in such a manner that 
0

1
R
ε <<  i.e., 

the stenosis is mild in nature. 

The governing equations of motion within the artery can be taken as 

 … (2) 

where ρ  is the density, p  is the fluid pressure and u  is the fluid velocity in 
the axial direction. μ is taken here as the co-efficient of viscosity, σ as 
electrical conductivity of the medium, B0 as the magnitude of externally 
applied transverse magnetic field and λ as the visco-elastic co-efficient. 

In the boundary conditions, it is assumed that a slip velocity at the 
inner wall of artery exists, so that 

 … (3) 

 

3. Solution of the problem 

To solve the problem analytically the governing equation and the 

boundary conditions are transformed by taking 
0

ry
R

= . Thus equations (2) 

and (3) are changed to 

 … (4) 
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  … (5) 

 

Next it is considered that 

  … (6) 

which reduces (4) as 

  … (7) 

where 

 
The solution of (7) is obtained as a series solution using Frobenius 

method and is given by 

 … (8) 

where  

  

                 … (9) 

is obtained from the boundary conditions (5). 
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Changing from y  to r  the solution can be written as 

 (10) 

If ú  is considered as the flow velocity in the absence of stenosis, then 
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 …  (11) 

The non-dimensional form of velocity profile becomes 

=
′

uu
u

 

  

( ) ( )( )
2 2
0

2 2
0 0

2
0

0

4 4 ! 4 1 !

8

j j j j

j j
j j

PR y y
j j

R p
z

β βχ
µ

µ

2 2 2 2 +∞ ∞

= =

  − 
+  =

∂ 
 ∂ 

∑ ∑
 

             
( ) ( )( )

2

2 22
0 00 0

0

2

4 ! 4 1 !

j j j j

j j j j
j j

p
r rz

p R j R j
z

β βχ
2 2 2 2 +∞ ∞

2 2 +
= =

∂ −     ∂ = − ∂  +   ∂ 

∑ ∑
 

… (12) 

The volumetric flow rate is 

 
0

2= ∫
R

Q urdrπ  

which gives here 

 

 … (13) 
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If 0Q  is taken as the volumetric flow rate in the absence of stenosis, then 

 
4
0

0
04

R pQ
z

π
µ

∂ =  ∂ 
 

In this particular case if it is considered that
0

1Q
Q

= , then 

 … (14) 

Again if Rτ  be the wall shear stress, then 

  

            … (15) 

If 0τ  is considered as the wall shear stress in the absence of stenosis, then 

  
Then the non-dimensional form of wall shear stress can be obtained as 

 ... (16) 

4. Numerical results and discussion 
In the present analysis mainly the velocity profile is discussed depending 

on the various parameters involved. From the obtained analytical solutions 
the numeric value of the velocity profile are calculated and then depicted 
through graphs. 
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In figure 2, effect of slip velocity α  on the flow velocity u  versus time 
t  is shown. As the slip velocity increases the flow velocity of blood also 
increases with respect to time t . Graphs are drawn between flow velocityu  
and tube radius r  in figures 3, 4 and 5. In figure 3 it is shown that the flow 
velocity again increases with the increasing values of slip velocity α . 

From figure 4, it is evident that the visco-elastic co-efficient λ  also 
effects the flow velocity u  and velocity decreases with the increasing value 
of λ . In the figure 5, the effect of externally applied magnetic field 0B  in 
flow velocity u is shown. The flow velocity u  increases with the increasing 
values of 0B . 

  
 Fig. 2 Fig. 3 
u  versus t  for different values of α. u  versus r  for different values of α. 

  
 Fig. 4 Fig. 5 
u  versus r  for different values of λ .   u  versus r  for different values of 0B . 
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[Abstract : In this work a theory of fractional order two temperature generalized 
thermoelasticity in the context of three-phase-lag (3PL) heat transfer is constructed using a 
new consideration of Taylor’s series expansion as developed by Jumarie. The theory is then 
applied to study the thermoelastic interactions in an isotropic infinite medium with 
cylindrical cavity where the internal surface of the cavity is subjected to a thermal and 
mechanical loading. The governing equations of the problem are solved by state space 
approach in Laplace transform domain. The inversion of Laplace transform of the solutions 
have been obtained numerically using a method based on Fourier series expansion technique. 
The numerical values of different thermophysical quantities are computed for copper like 
material and are depicted graphically to study the effect of two temperature and fractional 
parameters. Comparison of the results obtained for GN Model-III, 3PL model and fractional 
3PL (F3PL) model are also shown graphically.] 
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1. Introduction 

The generalized theory of thermoelasticity is one of the modified 
versions of classical uncoupled and coupled theory of thermoelasticity and 
has been developed in order to remove the paradox of physical impossible 
phenomena of infinite velocity of thermal signals in the classical coupled 
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thermoelasticity. Five generalizations of the coupled theory of 
thermoelasticity have been investigated by Hetnarski1,2. The first 
generalization formulates the generalized thermoelasticity theory  involving 
one thermal relaxation time which is investigated by Lord and Shulman3. 
The temperature rate-dependent thermoelasticity is developed by Green and 
Lindsay which includes two thermal relaxation times and does not violate 
the classical Fourier’s law of heat conduction4. 

The third generalization of the coupled theory of thermoelasticity is 
developed by Hetnarski and Ignaczak and is known as low-temperature 
thermoelasticity. The fourth generalization to the coupled theory of 
thermoelasticity introduced by Green and Naghdi5,6,7 provides a general 
framework within which a much wider class of heat flow problem can be 
modelled. The theory is further subdivided into three types based on 
constitutive response functions, which are known as model I, II and III. The 
nature of these three types of constitutive equations are such that when the 
respective theories are linearized, model I encompasses the classical heat 
conduction theory (based on Fourier law) but the linearized versions of model 
II and III allows propagation of thermal waves at finite speed. In Green-
Naghdi model II7, the internal rate of production of entropy is taken to be 
identically zero, which implies no dissipation of thermal energy. This model 
admits undamped thermoelastic waves in an elastic material and is known as 
the theory of thermoelasticity without energy dissipation. Green-Naghdi 
model III 6 includes the previous two models as special cases. 

The fifth generalization of the coupled theory of thermoelasticity is 
referred to the dual-phase-lag thermoelasticity8,9. Tzou considered micro-
structural effects in the delayed response in time in the macroscopic 
formulation by taking into account that increase of the lattice temperature 
which is delayed due to phonon-electron interactions on the macroscopic 
level. Tzou introduced two-phase-lag (2PL) model in which both the heat 
flux vector and the temperature gradient are considered.  According to this 
model, classical Fourier’s law,  has been replaced by 

 where the temperature gradient  at a 
point P of the material at time t + τT corresponds to the heat flux vector at 
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the same point in time t + τq . Here, K is the thermal conductivity of the 
material. The delay time τT is interpreted as that caused by the micro-
structural interactions and is called the phase-lag of the temperature 
gradient. The other delay time τq is interpreted as the relaxation time due to 
the fast transient effects of thermal inertia and is called the phase-lag of the 
heat flux. Recently, the three-phase-lag (3PL) heat conduction equation has 
been introduced by Roy Choudhuri10 in which the Fourier’s law of heat 
conduction is replaced by an approximation to a modification of the 
Fourier’s law with the introduction of three different phase-lags for the heat 
flux vector, the temperature gradient and the thermal displacement gradient. 
According to this model 

  … (1) 

where,  is the thermal displacement gradient and K* is the 
additional material constant and τν is the phase-lag for the thermal 
displacement gradient. 

Gurtin and William11,12, Chen and Gurtin13 and Chen, et al.14 have 
formulated a theory of heat conduction in deformable bodies, which depends 
on two distinct temperatures; the conductive temperature φ and the 
thermodynamic temperature θ. The first is due to thermal processes and 
the second is due to the mechanical processes inherent between the particles 
and the layers of the elastic materials. The presence of the material 
parameter a (≥ 0), known as the temperature discrepancy, in two 
temperature thermoelasticity makes it different from the one temperature 
thermoelasticity. In particular, if a = 0 then φ = θ and the governing 
equations of classical theory can be obtained from the two-temperature 
thermoelasticity theories. The linearized version of the two temperature 
theory has been studied by many authors. Warren and Chen15 have 
investigated the wave propagation in the two-temperature thermoelasticity. 

Youssef has developed the two temperature generalized thermoelasticity 
theory using Lord- Shulman model16 as well as Green Nagdhi model II17. 
Uniqueness and growth of solutions in two temperature generalized 
thermoelastic theories have been studied by Magañe and Quintanilla18. 
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Fractional calculus is a branch of mathematical analysis that focuses on the 
study of differential operators of arbitrary order. Firstly, Abel19 has applied 
fractional calculus in the solution of an integral equation that gave the 
first application of fractional derivatives which arose in the formulation of 
the tautochrone problem. A brief history of the development of fractional 
calculus can be found in Ross20. Caputo21 gave the definition of fractional 
derivatives of order 0 < α ≤ 1 of continuous function. Caputo and 
Mainardi22 and Caputo23 have employed the fractional order derivatives for 
the description of viscoelasticity materials and they have successfully 
established the connection between fractional derivatives and the theory of 
linear viscoelasticity and found a good agreement with the experimental 
results. Among the few works devoted to applications of fractional 
calculus to thermoelasticity, we can refer to the works of Povstenko24,25,26 
who introduced a fractional heat conduction law and found the associated 
thermal stresses. Sherief, et al.27, Youssef and Al-Lehaibi28 and Ezzat29,30 
introduced new models of thermoelasticity using a fractional heat conduction 
equation. Recently, Ezzat, et al.31 proposed a new model of thermoelasticity 
with three-phase-lag heat conduction in the context of a new consideration 
of time-fractional order Fourier’s law of heat conduction and also proved 
uniqueness and reciprocity theorems. They solved one-dimensional 
problem for an elastic half-space in the presence of heat sources. Mondal,  
et al.32 solved a one dimensional problem using dual phase Lag model in the 
context of fractional calculus for variable thermal conductive material. 

The main object of this paper is to study thermoelastic disturbances in a 
homogeneous isotropic infinite elastic medium with cylindrical cavity. The 
study has been carried out in the context of time-fractional two-
temperature generalized thermoelasticity for three phase lag (3PL) heat trans- 
fer. The method of Laplace transform in time domain has been applied to the 
governing equations and the resulting equations have been solved in that 
transform domain using state space approach. Finally, Laplace inversion has 
been carried out numerically by a method based on Fourier series expansion 
technique33. Numerical results for the thermal displacement, thermodynamic 
temperature, conductive temperature, thermal strain and thermal stress in 
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physical space-time domain have been obtained for a copper like material 
and presented graphically for the models GN-III, fractional three-phase-lag 
(F3PL) and 3PL. Some comparisons of the said thermophysical quantities are 
shown in figures to study the effects of two-temperature and fractional 
parameters. 

2. The mathematical model 

We have constructed fractional order theory of heat conduction for two-
temperature generalized thermoelasticity with three-phase-lag heat transfer 
by taking a new Taylor’s series expansion of time-fractional order α1 on 
both sides of equation (1) and retaining terms up to α-order in τT and τν  
and terms up to 2α-order in τq as follows 

 … (2) 

where 

  
In the context of the thermoelasticity theory, the energy equation for a 

homogenous isotropic thermoelastic solid is given as 

  … (3) 

Eliminating  from (2) and (3), we get 

 

             × ,   0 < α ≤ 1. 

3. Formulation of the problem 

We consider an infinite isotropic thermoelastic medium with a 
cylindrical cavity of radius R. Let the body be referred to cylindrical co-
ordinate system (r, ϑ, z) with the z axis lying along the axis of the 
cylindrical cavity, so that the body occupies the region R ≤ r < ∞. The 
surface of the cavity is under the mechanical loading, which is enough to 
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prevent the cubical dilatation and is under the thermal shock. Considering 
the axisymmetric plane strain problem, the displacement and temperatures can 
be taken as the function of r and t only. It follows that the displacement 
vector  the thermodynamic temperature θ, and the conductive temperature 
φ have following forms 

  
The non-zero strain components are given by 

  
The cubical dilatation e is given by 

  … (4) 

The non-zero stress-strain-temperature relations in the present problem are 

  … (5) 

  … (6) 

where, λ and µ are Lame’s constants, and γ = (3λ + 2µ)αt where, αt is the 
coefficient of the linear thermal expansion. The equation of motion without 
body force is given by 

  … (7) 

In absence of heat source, the fractional heat equation corresponding to two 
temperature generalized thermoelasticity based on three-phase-lag model is 

 

            ×  … (8) 

where, ρ is the density, K is the thermal conductivity, K* is the material 
constant for the Green-Naghdi (GN) models, T0 is the reference temperature, 
cE is the specific heat at the constant strain, τT   and τq  are the phase-lags of 
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the temperature gradient and the heat flux respectively, ∆2 is the Laplacian 
given, in our case, by 

  
The thermodynamic temperature θ and conductive temperature φ are 

related by 

  … (9) 
where a(> 0) is the two temperature parameter. 

Introducing the following non-dimensional variables 

  

   
Equations (5)-(9) can be obtained in non-dimensional form (after dropping 

the primes) as follows 

  … (10) 

  … (11) 

  … (12) 

 

                   … (13) 

  … (14) 
where   

  
where   
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Now we can write (12) in the following form 

  … (15) 
The initial and regularity conditions for the problem are given by 

 

 

   
The problem is to solve the equations (13)-(15) subjected to the 

following boundary conditions : 

(i)  Thermal boundary condition : 
The internal surface r = R is subjected to the thermal shock given by 

   … (16) 
where  
           =  0, t < 0. 

(ii)  Mechanical boundary condition : 
On the internal surface r = R, there is no cubical dilatation, i.e., 
 e(R, t) = eR = 0. … (17) 

4. Method of solution 

For the solution of the problem we apply Laplace transform defined by 

   
to the equations (10), (11), (13), (14) and (15) we get 

   … (18) 

   … (19) 

 
 … (20) 

 … (21) 
 … (22) 
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The boundary conditions (16) and (17) in the transformed domain take 
the forms 

 … (23) 
 … (24) 

From (20) and (21), we get where 

 … (25) 
where  

 
Substituting  from (25) into (20), we obtain 

 … (26) 
Putting the value of  in (22) and using equation (26) we have 

 … (27) 
where 

 
Equations (26), (27) can be written in the form of a vector-matrix 

differential equation as follows 

 … (28) 
where  

 
 

and 

  

5. State space approach 
 

The solution of the system (28) can be written in the following form 

 … (29) 
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where  

  
To find the matrix  A(s), we use the spectral decomposition of 

A(s) given by 

 … (30) 

where λ1 and λ2 are the eigenvalues of the matrix A(s) and E1, E2 are 
projections on eigenspaces corresponding to λ1, λ2, given by 

 

 
Thus, we get 

 … (31) 

 
Now, the solution (29) can be written as 

 … (32) 
Using Cayley-Hamilton theorem the matrix exponential exp 

(−B(s)(r − R)) in equation (32) can be expressed as 

exp (−B(s)(r − R)) = b0(r, s) I + b1(r, s)B(s), … (33) 
where b0, b1 are the coefficients depending on s, r to be determined from the 
equations 

exp (−P1(r − R)) = b0 + b1P1, … (34) 

exp (−P2(r − R)) = b0 + b1P2; … (35) 
P1, P2 being the eigen values of the matrix B(s), i.e. the roots of the 
characteristic equation of the matrix B(s) obtained as follows 

 … (36) 

 



 FRACTIONAL ORDER TWO TEMPERATURE GENERALIZED ETC. 199 

Solving (34) and (35), we get b0 and b1 as follows 

 … (37) 

 … (38) 

Hence, (33) can be written as 

 … (39) 

where  

 … (40) 

 … (41) 

 … (42) 

 … (43) 

Hence, from (32) and (39), we get 

 … (44) 

Then, the solutions for  can be obtained from (44) by using the 
boundary conditions (23) and (24) as follows 

 (45) 

 … (46) 

Substituting (45) and (46) into (25) we get   in the following form 

 … (47) 
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where  

 

Integrating (46) we get  as follows 

 … (48) 

Using (48) in (18) we get  as follows 

 

 … (49) 

 Equations (45)-(49) give complete solutions to the thermal shock 
problem in the Laplace transform domain.. 

5. Numerical results and discussion 

In order to invert the Laplace transform in the above equations, we 
adopt a numerical inversion method based on a Fourier series expansion33. 
The numerical code has been prepared using Fortran 77 programming 
language. For computational purpose, copper like material has been taken 
into consideration. The values of the material constants are taken as Roy 
Choudhuri and Dutta35 

 

 

 
and the hypothetical values of relaxation time parameters are taken as : 

τq = 0.001, τν = 0.025, τT  = 0.015. 

Also, for the computational purpose we have taken : 

CT  = 2.0, φ0 = 1.0, R = 1.0. 
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The computations were carried out for t = 0.4. The displacement, 
thermodynamic temperature, conductive temperature, the thermal stress and 
the thermal strain distributions are represented graphically for dierent values 
of r for weak conductivity (α = 0:7) and normal conductivity (α = 1:0) for 
both one-temperature (ω = 0:0) and two-temperatures (ω= 0:2) respectively. 

Throughout the figures (1-5), the curves without marker represent the 
results corresponding to model F3PL (fractional three-phase-lag) and the 
curves with marker (square) represent the results corresponding to model 
3PL (three-phase-lag). 

Figures 1-5, are drawn for comparative study of two models (F3PL and 
3PL) in one-temperature theory (1TT) as well as two-temperature theory 
(2TT). Figures 6-10 are drawn for comparative study of three models (F3PL, 
3PL and GN-III) in two-temperature theory whereas figures 11-15 are drawn 
for comparative study of three models (F3PL, 3PL and GN-III) in one-
temperature theory. 

Figures 1-5 represent dierent thermophysical quantities, viz., thermal 
displacement (u), thermodynamic temperature (θ), conductive temperature 
(ϕ), thermal stress (σrr), thermal strain (err) versus the space variable r 
respectively for t = 0:4 in one-temperature as well as two temperature 
theory. From figure 1, we see that, the maximum magnitude of displacement 
appears at the boundary of the cavity. In both types of conductivities  
(α = 0:7; 1:0), the magnitude of displacement is greater in 1TT in 
comparison to 2TT and the effect of fractional parameter is more prominent 
on 1TT. From figure 2, we observe that the thermodynamic temperature 
becomes negative at a larger distance from the inner surface of the cavity in 
1TT than 2TT. In the region 1.0 ≤ r ≤ 1.2 (approx.), the magnitude of the 
thermodynamic temperature is smaller for one temperature case and they are 
positive. The effect of two temperature parameter as well as fractional 
parameter are prominent in the region 1.2 < r ≤ 4.0 (approx.), after which all 
the curves coincide and gradually tend to vanish. From figure 3, it is clear 
that the conductive temperature satisfies our assumed boundary condition in 
all cases. Likewise the thermodynamic temperature, the conductive 
temperature becomes negative at a larger distance from the inner surface of 
the cavity in 1TT than 2TT. The magnitude of the conductive temperature is 
greater for one temperature case and they are positive in the region 1.0 ≤ r ≤ 
1.3 (approx.). The effect of two temperature parameter as well as fractional 
parameter are prominent in the region 1.3 < r ≤ 4.6 (approx.), after which all 
the curves coincide and they gradually tend to vanish. 
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From figure 4, we see that the radial stress is compressive in nature 
throughout the body. The maximum magnitude of the radial stress is 
attained at the surface of the cavity for both types of conductivities. In the 
region 1.0 ≤ r ≤ 2.5 (approx.), the magnitude corresponding to 2TT is 
greater in comparison to 1TT. In the region r > 2.5, all the curves coincide 
and they tend to vanish. 

From figure 5, we see that the effect of conductivity parameter appears 
for 1TT but no effect of conductivity parameter appears for 2TT. The 
magnitude of strain in 2TT are more or less identical for weak and normal 
conductivity, whereas for 1TT, the magnitude is greater in normal 
conductivity.  

Figures 6-10 represent the different thermophysical quantities, viz., 
thermal displacement (u), thermodynamic temperature (θ), conductive 
temperature (ϕ), thermal stress (σrr), thermal strain (err) versus the space 
variable r respectively for t = 0.4 for two temperature theory. From figure 6, 
we see that throughout the region the magnitude of displacement 
corresponding to F3PL is largest among the three models (F3PL, 3PL,  
GN-III). It is also observe that at the nearer region of the surface of the 
cavity, the magnitude corresponding to the GN-III model is smaller than the 
magnitude corresponding to 3PL models. 

From figure 7, we see that the magnitude of the thermodynamic 
temperature (θ), are almost identical at the surface of the cavity and in the 
region r ≥ 4.1 (approx.), the difference of magnitude for three considerations 
are prominent in the region 1.1 ≤ r ≤ 4.1 (approx.). 

From figure 8, we see that the conductive temperature (ϕ) satisfies our 
assumed boundary condition in all cases. We also observe that the 
conductive temperature is positive at the surface of the cavity in all 
considerations. For F3PL model the conductive temperature becomes 
negative for smaller value of r with respect to the other two models.  

From figure 9, it is clear that the radial stress is compressive throughout 
the body. The rate of decay for GN-III model is faster than other two 
models. Figure 10 indicates that the surface of the cavity is strain-free i.e it 
satisfies our assumed boundary condition. The maximum magnitude of 
strain is due to the GN-III model. After r ≥ 3.5 the strain in all cases is 
negative and then it tends to vanish. 
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Figures 11-14 represent the different thermophysical quantities, viz., 
thermal displacement (u), thermodynamic temperature (θ), thermal stress 
(σrr), thermal strain (err) versus the space variable r respectively for t = 0.4 
for one temperature theory. From figure 11, we see that the internal surface 
of the cavity gets maximum displacement for all models. For r ≥ 3.5 the 
displacement becomes positive and then they tend to vanish. From figure 
12, we see that the magnitude of the thermodynamic temperature (θ), are 
almost identical at the surface of the cavity and in the region r ≥ 4.2 
(approx.), the difference of magnitude for three considerations are 
prominent in the region 1.1 ≤ r ≤ 4.2 (approx.). Figure 13 shows that the 
radial stress is compressive in the region 1.0 ≤ r ≤ 2.75 (approx.). Also the 
rate of decay of the magnitude of the radial stress is faster for GN-III model 
like 2TT. From figure 14, we see that the strain satisfies our assumed 
boundary condition. The strain is positive in the region 1.0 ≤ r ≤ 3.2 
(approx.), after that it becomes negative and then tends to vanish. 

  
 Fig. 1 Fig. 2 
 Variation of displacement u with r for Variation of thermodynamic temperature θ with r for  
 different ω and α. different ω and α.  

 
 Fig. 3 Fig. 4 
 Variation of conductive temperature ϕ  Variation of stress σr r with r for  
 with r for different ω and α. different ω and α.   
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 Fig. 5 Fig. 6 

Variation of strain er r with r for different ω and α. Variation of displacement u with r for ω= 0.2. 

 
 Fig. 7 Fig. 8 
 Variation of thermodynamic temperature  Variation of conductive temperature  
 θ with r for ω= 0.2. ϕ with r for ω= 0.2. 

  
 Fig. 9 Fig. 10 
 Variation of stress σr r with r for ω= 0.2. Variation of strain er r with r for ω= 0.2. 

 
 Fig. 11 Fig. 12 
 Variation of displacement u with r for ω= 0.0. Variation of thermodynamic temperature  
  θ with r for ω= 0.0. 
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 Fig. 13 Fig. 14 
 Variation of stress σr r with r for ω= 0.0 Variation of strain er r with r for ω= 0.0 
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