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FOREWORD TO THE SPECIAL ISSUE

Satyendra Nath Bose was born on January 1, 1894. To celebrate his 125th birth
anniversary, a large number of conferences and meetings were held throughout the
country. The Calcutta Institute of Theoretical Physics marked the happy occasion
by holding a one day meeting in collaboration with St. Paul's College, Kolkata, on
28th July, 2018 . This special issue containing three articles is a mark of our continued
effort to remember the contribution of one of our country's foremost physicists.
Ever since the prediction of an exotic phase (1925) through a process known as
Bose -Einstein condensation, experimentalists the world over had been trying to
create this unusual phase in the laboratory. It took seventy years for that effort to
succeed! In the physics department of Calcutta University, Prof. Pradip Narayan
Ghosh and his collaborators put in a huge amount of effort towards the end of the
previous century and the beginning of the present to attain the ultra- low temperatures
needed to see this exotic phase. While they succeeded in cooling the alkali vapours
well towards the final goal, the facility had to be abandoned before the final frontier
could be breached. In this memorial issue Prof. Ghosh describes the phenomenon
of Bose-Einstein condensation and discusses in detail the technique of evaporative
cooling - the process that leads to temperatures low enough to observe the
condensate.
We round out this special issue with two more articles - one a discussion of the
important process of thermoluminescence which has to do with the emission of visible
or invisible light by matter. In this process, certain  crystalline materials absorb
electromagnetic radiation and later emit them on heating. The process has important
applications on the dating of materials. In the other article a brief historical overview
of statistical physics has been given from the vantage point of the ideal gas.

Jayanta K Bhattacharjee
School of Physical Sciences
IACS, Kolkata.
          &
Director of Calcutta Institute
of Theoretical Physics
4/1, Mohan Bagan Lane, Kolkata.
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Bose Einstein Condensation

Pradip N Ghosh
Physics Department, University of Calcutta

1.  Condensation of Boson

Bose's significalt paper was introduced as a new statistitcs that was published in
1924.  Einstein tranlated it into  German language for publication with a note that in
English is:

"Bose's work signifies an important step forward. The method used here also
yields the quantum theory of an ideal gas as I shall work out elsewhere".

The statement was very significant. Bose statistics was developed while deriving
Planck distribution law for radiation. It was applicable to photons. Einstein showed
that it can be applied to ideal gases as well and he wrote that in future he would
show that it could be used to develop the quantum theory of an ideal gas. As per
his promise he published a paper in the  next year and showed that gas phase atoms
obeying Bose statistics could be cooled to very low temperature so that they would
all condense to the ground state. Dilute gas of atoms collected in the ground
state would form a new phase. The proposal of Einstein led  scientists to understand
the theoretical implications and to attempt the new phase experimentally. After many
failures and some misinterpretaions, it was experimentally achieved in 1995 after
long seventy years.

We shall try to understand what this new phase is and also the problems for
achiving the new phase.

2. Boson and Fermion

Bosons have integral spins, for example, photon, phonon or atoms like 87Rb that
have an even number of Fermions. On the other hand Fermions have half-integral
spins like electrons, protons or 3He or similar atoms.   Bosons allow any number of
particles in a quantum state; so they are Gregarious in nature. In contrast, Fermi
statistics allows only one particle in a state; so they are Loners in nature.
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3.  Cold Atom as a de Broglie Wave

Cold atoms have low momentum p so the wavelength dB = h/p becomes large.

dB =  h /(2 kT)1/2.

Fig. 2
The wavelength increases with lowering of temperature. Finally,

at very low temperatre one-dimensional BEC is formed.

atoms decreases with lowering of temperature. Thus at a ceratin low temperature,
there will be no space between the atoms. The waves will join each other. Thus the
atome are tightly packed in  the coordinate space (Fig. 3). The atoms are "inflated".
The dilute gas system becomes dense, The gas atoms are at low temperature and
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Hence at low temperature, the average wavelength is much larger ( Fig. 1) and
may become comparable to the average distance between the atoms (Fig. 2). This
picture can be extended to the three dimensional case. The increase in de Broglie
wavelength will mean that the probability distribution of the atom will be over a
larger space or the atom itself will occupy more space. Since the distance between
the atoms is fixed for a  certain gas  pressure, the average distance between the

Fig. 1
Atom as  a de Broglie wave. Atomic spin is shown as a line.



high density, a significant fraction of all the atoms will condense into a single ground
state, since the Boltzman law states that the atoms will fall down to the lower state
and Bose statistics allows accumulation of any number of atoms in a single state.

4.  Quantum Identity Crisis

In this case, single atoms cannot be identified. The atoms are absolutely identical.
No measurement can separate them. One cannot separate one atom from another;
they are all in the same place. Now we can realize why it took so long before people
could understand what BEC really meant. At the  exceptionally low temperature
needed for BEC the atoms lose their individual quantum identities and coalesce into
a single blob (Fig. 3). It may be called  a "super atom" for that reason. All the atoms
move in phase. They all dance in tune. Hence their dynamics cannot be described
by a single Schroedinger equation. The system of all atoms that participate in the
formation of the BEC is to be described by one equation of motion. Thus individual
atoms are not be described by one wave function. We have to develop the wave
function describing the set of atoms that form BEC.

Fig. 3
Picture shows atoms confined in a Bose Einstein Condensate.

If we put an atom in a box,  it  can only have certain particular energies. It has to
choose from a particular set of allowed energies. What Einstein's equations predicted
was that at normal temperatures the atoms would be in many different energy levels.
However, at very low temperature, a large fraction of the atoms would suddenly go
down into the very lowest energy level. The atoms collected in the bottom is what
we call Bose-Einstein condensation.
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5.  Theoretical aspects of condensation

Bose Einstein Statistics for a Perfect Quantum Gas :

In a perfect quantum gas, the total Hamiltonian of a set of N non-interacting
particles is

ܪ =  ෍ℎ݅

ܰ

݅=1

  ...    (1)

hi are the one particle Hamiltonians. In terms of creation and annihilation operators,
we can write the Hamiltonian and the number operator as

ܪ = ∑ ℰߤܽߤ
ߤߤܽ† ∑ =݌ܰ݋        , ߤܽ

ߤߤܽ†                     ...    (2)

For a multimode radiation field  we can define the eigenstates in the Fock space
as n1, n2, ... ... ns ... 

For a given set of values of n1, n2, ... ... ns ...  we can use a notation j, then

〈݆|ܪ = ܧ݆ ܧ݆                       , 〈݆|    = ∑ ݏݏ݊ ℇݏ                

݌ܰ݋ |݆〉 = ݆ܰ |݆〉,                     ݆ܰ =  ∑ ݏݏ݊             

〈݆|ܪ(3)    ... = ܧ݆ ܧ݆                       , 〈݆|    = ∑ ݏݏ݊ ℇݏ                

݌ܰ݋ |݆〉 = ݆ܰ |݆〉,                     ݆ܰ =  ∑ ݏݏ݊             ...    (4)

ns is the occupation number of the individual quantum states and it can have any
positive integer value including zero. The Bose Einstein distribution for the mean
occupation number of the particles in the j-th state is

݆ܰ =  1

݆ܧ−ߤ)−݁ 1−ܶܤ݇/(
 ,        ...    (5)

where  is the chemical potential determined by the condition that the total number
of particles is N = j Nj.

The Grand canonical partition function is

ܼ =  ∑ ݆ܧ−ߤ)݁ )݆ܰ ݆ܶܤ݇/ (= ෑܼݏ
ݏ

  ...    (6)
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where,

ݏܼ  = ∑ ݏ݊ܶܤ݇/ݏ݊(ݏℇ−ߤ)݁ ( ...    (7)

is the grand canonical partition function for each single particle state s. This leads to
a factoriztion of the partition function into a product of terms for individual quantum
states.

For the Free energy, F = _kB Tin Z, we can write

ܨ =  ∑ ݏݏܨ ݏܨ     , = ݏZ݈݊ܶܤ݇−  .  ...    (8)

For Bosons the summation in Z leads to a geometrical series since ns can have
values 0,1,2,….. Hence

∑=ݏܼ ݏ݊ܶܤ݇/ݏ݊(ݏℇ−ߤ)݁ =  1
ܶܤ݇/(ݏℇ−ߤ)݁ −1

 .          ...    (9)

The partition function satisfies the condition

݈ܼ݊ = ∑ ݈݊ 1
1− ݁ ݏܶܤ݇/ݏℇ−ߤ) ( ...    (10)

Hence we get

ܨ = ∑ܶܤ݇  ݏ݈݊ (1 − (11)    ... (ܶܤ݇/(ݏℇ−ߤ)݁ 

In case of a large system we have to know the number of  particles N. For the
chemical potential, we can write

ߤ =  −ቀ߲ܨ
߲ܰ
ቁ
ܶ,ܸ

. 

Bose Einstein Condensation in a cubical box :

For the non-interacting particles, we must have  < 0,   this is necessary since
the number of particles in a state should be positive.  If E is the energy of the
particles of mass M confined in a box of volume V= L3 we can write the particle
eigenfunctions and energies as
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,ݔ)߰ ,ݕ (ݖ =  1
ܸ
),ℏ/(ݖݖ݌+ݕݕ݌+ݔݔ݌)݅݁ ...    (12)

ܧ = ݌ 
2

ܯ2
= ݕ݌+2ݔ݌ 2ݖ݌+2

ܯ2
,                            ...    (13)

the allowed values of momenta are

ݔ݌ = ℏߨ2 
ܮ
ݔ݌   ,1݊ = ℏߨ2 

ܮ
ݔ݌   ,2݊ = ℏߨ2 

ܮ
݊3,( ...    (14)

where n1, n2, n3 are integers ( 0,1,2,3……..). For a large box (L ), the
momentum is quasi-continuous. In momentum space in a volume dpx dpy dpz, the
number of eigenstates is Vdpx dpy dpz  / (2h)3. Assuming continuous distribution
of momentum the number of states with momentum below a certain value of
p = 2ME  is

(ܧ)ܰ =  
ܸ

3(ℏߨ2) න ݌2݀݌ߨ4
݌

0
 

ܸߨ4 =
3(ℏߨ2)3 (15)    ... .3/2(ܧܯ2)

The density of states is

(ܧ)ߩ = (ܧ)ܰ݀ 
ܧ݀

= ܸߨ4 
3(ℏߨ2) (16)    ...    . 1/2(ܧ2)3/2ܯ

It must be mentioned here that the number of states and also the density of states
as calculated in this approximation is zero if the nergy is zero. Hence the density
does not include the particles in the zero energy state.

The total number of particles is

ܰ =  0ܰ +  ∫ ∞(ܧ)ߩܧ݀
0

1
1−ܶܤ݇/(ܧ−ߤ)−݁

  ,        ...    (17)
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where N0 is the number of particles in the ground or zero-energy state. The chemical
potential can be determined from the total number of particles. But it has to be done
numerically and analytical solution is complicated. For this purpose we define a few
parameters and follow the standard nomenclature of statistical mechanics.

 = 1/kBT,                   x =  E ...    (18)

and define fugacity as

z = e .   ...    (19)

Using the expression of density of states and the number of particles (Eq. (15)
and (16)), we can write

3(ℏߨ2)ܰ

ܸߨ4
3/2−(ߚ/ܯ) = ∫ ∞ݔ݀

0
ݔ2√

1−ݖ/ݔ݁
= ).(ݖ)ܫ  ...    (20)

The ground state number of particles are omitted in deriving this expression. The
integral is a function of fugacity and hence the chemical potential. Since < 0, we
should have

0  z < 1  ...    (21)

Fig. 4
Plot of I(z) against Z.

In order to solve the above equation we can use a geometric method by plotting
the curve (Fig. 4) of the integral I(z) against z  and the intersection of a horizontal line
for a fixed density and temperature with this curve will lead to a value of z. We need
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a value for the right hand side of the above equation when the horizontal line intersects
the curve  at z < 1. The integral has a value of approximately 3.274 when z = 1.
Hence we need a solution when

2ߨ2ܰ

ܸ
3/2−(ߚℏ2/ܯ) < (1)ܫ ≅ 3.274(  ...    (22)

There is no solution, if the above is not satisfied. Hence for a fixed density 
N
V

we can define a critical temperature above which there can be a positive density for
chemical potential satisfying the condition < 0.

ܶܿ = 3.308  ℏ2

ܯܤ݇
(ܰ
ܸ

)2/3.                      ...    (23)

Thus the above condition requires that T  > Tc. It may be noted that the above
relation is valid for the case when the ground state population is zero. If we consider
the ground state population we need the situation is valid when T < Tc.

According to Bose Einstein distribution

0ܰ =  1
ߤߚ−݁ −1

  .                         ...    (24)

The chemical potential approaches the value zero from a negative value, hence
the figacity approaches unity as  0. Hence

0ܰ =  1
ߤߚ−݁ −1

= −  1
ߤߚ

 .                     ...    (25)

Since  is a small negative quantity, the population of the ground level can be
very large. If the energy of the first excited state is higher than the ground state
energy by kB T or larger,

1ܰ =  1
ߚ݁ ߤ−1ܧ) )−1

< 1.                     ...    (26)

The above is true because (E1 –) is a positive quantity with magnitude more
than unity. If the first excited state energy is less than kB T, (E1 –)  1, so we can
write

1ܰ =  1
ߚ ߤ−1ܧ) )

=  1
0ܰ/1+1ܧߚ

  .               ...    (27)
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Hence,
ܰ1
ܰ0

=  1
1+1ܧߚ0ܰ

= ߤ
1ܧ−ߤ

≅ − ߤ
1ܧ

 .                  ...    (28)

Thus N1  N0 as  0. Hence the ground state population is  larger than that of
any of the excited states. This leads to a transition to a state in which the population
is mostly concentrated in the ground level at a temperature lower than the critical
temperature. This exhibits Bose Einstein Condensation below the critical
temperature Tc. .

Since 
0

1– 
βN

 and N0 is very large below Tc., the chemical potential is
practically zero and hence the fugacity is nearly 1. Using the integral in the definition
of the number of particles, N  (Eq.20) and also the expression of temperature
(Eq. 23),  it can easily be shown that

0ܰ = ܰ[ 1 − ( ܶ/ܶܿ .)
3
2]                                        ...    (29)

Hence, as the temperature approaches the critical temperature the entire population
collapses to the ground state.

6.  Evaporative Cooling

Laser cooling in a MOT can cool the atoms down to a temperature of neraly 100
K which is much higher than the temperature needed for observation of BEC.
Hence the formation of BEC needs a low temperature and high density.

A more efficient method of atom cooling is Evaporative Cooling  applied to
atoms. It happens in the same  principle as it happens in  the cooling of a cup of  hot
tea. In the case hot tea at a temperature of 373 K, the molecules of tea, water etc
have higher energy at the surface of the cup of tea than those at the lower part.
When there is evaporation these molecules with higher kinetic energy and higher
velocity will first leave the cup. The remaining molecules thermalize in a continuous
process.

Thus the average energy of the cup of tea is lower leading to lowering of
temperature. This simple explanation is known from the school level physics. But
the point to be noted here is that the number of molecules lost is very small. The
loss can be easily measured by noting lowering of the height of the liquid tea in the
cup that is allowed to cool by evaporation. When it cools down to room
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temperature (300K), there is decrease of temperature by more than 20%, though
the number of molecules lost is not more than 2%. Hence the process is efficient.

The same physics of cooling a cup of tea is used to cold atoms in a magnetic
trap. The cold atoms in the MOT are driven to a magnetic trap produced by a
magnetic field. The atoms with magnetc moments align themselves parallel to the
direction of the field and the magnetic field interaction energy is –

μ.H, where μ


is the magnetic moment of the atom and 

H  is the magnetic field. The interaction

is attractive and produces a potential well trapping the atoms, if the atomic moments
and the magnetic field are in the same direction. Atoms within the trap have different
velocities and the higher velocity or higher energy atoms are near the top of the
trap. If the atoms have a magnetic moment in the reverse direction the interaction
energy will be .

 
H and hence it produces a repulsive interaction. Thus if a

mechanism can invert the moment of the atoms they will escape the well.

This is achieved by using a radio frequency field with a frequency vRF such that
hvRF = 2 .


 

H . This frequency can be tuned to coincide with some particular trap

depth. If the frequency is set to a value that corresponds to the top of the well,
then the atoms near the surface of the potential well will move out of the top as
they have a reversal of the moment with gain of energy.

This process may be continued and the RF frequency can be tuned and slowly
lowered to remove more atoms from the top of the trap. In  practice,  the tuning
of the frequency is stopped at a certain depth of the well. The well will contain the
atoms that will retharmalize after atoms with higher velocity have been driven out.

7.  Observation

The observation of BEC is mostly destructive. Any laser beam incident on the
BEC may evaporate out the atoms and completely destroy the condensed state.

In the destructive method of observation, we can only get  the velocity distribution
of the atoms giving a signature that the BEC was formed. In this method as soon as
the cooling lasers are switched off, the cold atoms start flying out with their residual
velocities. They are recorded by a CCD camera kept fixed near the BEC cell after
a few msec from the moment of switching off the lasers. The atoms with larger initial
velocity will traverse a longer path and the slower atoms will travel a shorter distance.
So a velocity distribution can be observed in the coordinate space. This will give a
signature of BEC (Fig. 5). Before the formation of BEC ( T >Tc ) the atomic velocity
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distribution can be described by a Gaussian describing the cold atoms. As the
condensation begins (T  Tc)  we can see a much narrower and sharper peak sitting
on a Gaussian pedestal. The sharp peak describes the BEC atoms and the broader
background represents the atoms that have not yet been condensed. With further
lowering of temperature ( T < Tc ) we can get a single narrow Gaussian describing
all the condensed atoms. The condensation was observed for Na atom at MIT and
Rb atom ( Fig 5).
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The velocity distribution of atoms recorded as a function of distance
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few msec from the moment of switching off the cooling laser.



Thermoluminescence and its applications

Tapan Ganguly*
School of Laser Science and Engineering,
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Jadavpur, Kolkata 700032, India
Email: tapcla@rediffmail.com

Mob.: +9748221149

1. Introduction

It is well-known that Photoluminescence causes due to  absorption of photons.
It is mainly of two kinds: Fluorescence and Phosphorescence.   Fluorescence  is a
kind of photoluminescence as a result of singlet-singlet electronic relaxation (typical
lifetime: nanoseconds) whereas  Phosphorescence represents  photoluminescence
as a result of triplet-singlet electronic relaxation whose typical lifetime is of milliseconds
to seconds. Luminescence is the emission of optical radiation (infrared, visible, or
ultraviolet light) by matter. This phenomenon differs from  incandescence, which is
the emission of radiation by a substance by virtue of its being at a high temperature
(>5000oC) (Black body radiation). Luminescence can occur in a wide variety of
matter and under many different circumstances. Thus, atoms, polymers, inorganic,
organic or organometallic molecules, organic or inorganic crystals, and amorphous
substances all emit luminescence under various conditions.

     Thermoluminescence process is one of the processes in Thermally Stimulated
Phenomena1, 2. Thermoluminescence is a temperature stimulated light emission from
a crystal which occurs after removal of excitation. Thermoluminescence is a
complicated phenomenon. With the advancement of technology, thermoluminescence
possesses various applications such as, radiation dosimetry, age determination and
geology.

In seventeenth century  Robert Boyle and Henry Oldenburg conducted

*  Ex-Emeritus Professor (AICTE) (2013), Jadavpur University
     Ex-Emeritus Professor  (UGC)  (2015), Jadavpur University
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experiments on minerals to examine their radiation due to heating. Dufay is the first
to be acknowledged for his findings on thermoluminescence. He referred to lighting
as a kind of burning. He worked on many materials, primarily chlorophane, and
found out that too much heating would lead to loss of thermoluminescence of the
material. A famous scientist, Canton brought Dufay's studies to a new level, by
raising the temperature of phosphorus even further and discovering a new type of
light, which he referred to as the thermoluminescence of artificial phosphorus.

The scientists Saussure and Wedgwood studied thermoluminescence in the
eighteenth century. The former recognized three types of stones which emit
luminescence on heating.  They are : (i) those containing sulphur, (ii) those which
absorb the light and then emit it, like the diamond, and (iii) those which do not
require air and will luminesce under hot water, like dolomite and fluorspar. He further
showed that the intensity of the colour of the fluorspar is an indicator for the level of
thermoluminescence. The latter conducted a study on the thermoluminescence and
triboluminescence, lighting as a result of friction. Studies on thermoluminescence
continued in the nineteenth century. Researcher Heinrich claimed that almost all
substances could emit light, provided that they are in powder form and subject to
moderate heating.

Wiedmann and Schmitt attributed the thermoluminescence characteristic to
cathode rays3.

Thermoluminescence can be described by two stages. First stage is the change
of the system from equilibrium to metastable state by absorption of energy from UV
or ionizing radiation. Then the second stage is relaxation of the system back to the
equilibrium by energy release such as light with the help of thermal stimulation. Thus,
thermoluminescence (TL) is the thermally stimulated emission of light following the
previous absorption of energy from radiation .

2.  A-Energy Storage

There are two ways for the stabilization of this absorbed energy: electronic
excitation and displacement damage. At the end of both processes, radiation-induced
defects are formed in the material structure. Radiation-induced defects are localized
electronic states occupied by non-equilibrium concentration of electrons. Before
irradiation, materials have localized electronic energy states and after irradiation,
some of these states are occupied by a non-equilibrium concentration of electrons.
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Therefore, these occupied states are called radiation-induced defects. They showed
that the cause of defect creation is electronic excitation rather than non-ionizing
displacement damage.

Energy storage caused by electronic excitation takes place by the electron-hole
pair production and excitation creation. Electron-hole pair production is the formation
of mobile holes and electrons in the crystal structure of the material after radiation.
In addition, there exists a mid gap state caused by defects which may be created by
preexisting impurities or radiation induced defects. This gap is found between the
two energy bands; called conduction band and valence band. The valence band is
the outer most energy level and contains electron-hole pairs in ground state of the
solid. On the other hand; in the conduction band, electrons are free to move and
have ability to produce electric current.

According to thermoluminescence phenomena it is assumed that there are two
kinds of imperfections called electron trap and hole trap in the crystal which are
localized at mid gap states . In the mid gap, the electron trap is believed close to the
conduction band and the hole trap is far from the valence band.

Scheme 1a  reproduces the energy storage mechanism. After irradiation, the
electrons pass from valence band to conduction band and hole becomes positively
charged area in the valence band. When electron reaches the conduction band,
electron find its way into an electron trap and hole occupies its associated trap. Hole
traps are called luminescence center in this process 4,5.

migration
Hole

Electron
migration

Ionizing 
Radiation

CBCB

VB VB

Electron

Hole

Electron
trap

Hole
trap

Hole Trap
(LUMINESCENCE CENTER)

Equilibrium Metastable State 

Scheme 1a
Energy Storate

CB-Conduction Band
VB-Valence Band
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3.  B-Energy Release

Excitation with an increase in temperature or giving light, results in release of the
stored energy. Furthermore, state of the material changes from metastable to ground.
When heat is increased, the electron trapped in the electron trap is released to
conduction band. After that electron is free to retrap or recombine with the hole
found in the hole trap. The recombination of the electron with the hole in hole trap
results in the emission of photons. In this case hole trap is called as recombination
center 2. This process is explained  in the Scheme 1b.

Electron
migration

Heat or
Light

CBCB

VB VB

Electron
trap

Hole
trap

Retrapping
Center

Equilibrium Metastable State 

Scheme 1b
Energy Release,

CB-Conduction Band
VB-Valence Band

After the energy release, the output of the emitted light as a function of temperature
is called thermoluminescence glow curve2. Shape of the glow curves is one or more
peaks of emitted light and some of them may overlap. Magnitudes and looks of the
glow curves may change depending on the spectral response of the light sensitive
device.

4.  Applications of Thermoluminescence

   One of the important applications of Thermoluminescence is Thermoluminescent
dosimetry (TLD).  TLD is used in many scientific and applied fields such as radiation
protection, radiotherapy clinic, industry, and environmental and space research, using
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many different materials. The basic demands of TLD are good reproducibility, low
hygroscopicity, and high sensitivity for very low dose measurements or good response
at high doses in radiotherapy and in mixed radiation fields.

     LiF is used for dose measurements in radiotherapy since the effective atomic
number of 8.3 is close to that of water or tissue. Lithium tetraborate is more
tissue-equivalent than LiF, but it is deliquescent (absorbs moisture from the
atmosphere) and its stored signals fade rapidly. Its use is therefore only worthwhile
for x-rays, where the closeness of its effective atomic number of 7.3 to tissue
outweighs the disadvantages6. Calcium sulphate has an effective atomic number of
15.6 and is therefore much less tissue-equivalent, but its effective atomic number
is quite close to that of bone. It is very sensitive and therefore can be used for
protection dosimetry. Calcium fluoride has an effective atomic number of 16.9
and is also used for protection dosimetry, as it is also very sensitive. TLDs are
relative dosimeters and therefore have to be calibrated against absolute dosimetry
systems such as a calibrated ion chamber. A 60 Co gamma source is generally
used. Due to their small size, TLDs are convenient for dose-distribution
measurements in medicineand biology.

     The TLDs most commonly used in medical applications are LiF: Mg,Ti,
LiF : Mg, Cu,P and Li2B4O7 : Mn, because of their tissue equivalence. Other
TLDs, used because of their high sensitivity, are CaSO4 : Dy, Al2O3 : C and
CaF2 : Mn. TLDs are available in various forms (e.g. powder, chips, rods and
ribbons). Before they are used, TLDs need to be annealed to erase the residual
signal. Well established and reproducible annealing cycles, including the heating
and cooling rates, should be used. A basic TLD reader system consists of a planchet
for placing and heating the TLD, a PMT to detect the thermoluminescence light
emission and convert it into an electrical signal linearly proportional to the detected
photon fluence and an electrometer for recording the PMT signal as a charge or
current. The thermoluminescence intensity emission is a function of the TLD
temperature T. Keeping the heating rate constant makes the temperature T
proportional to time t, and so the thermoluminescence intensity can be plotted as
a function of t if a recorder output is available with the TLD measuring system.
The resulting curve is called the TLD glow curve. In general, if the emitted light is
plotted against the crystal temperature one obtains a thermoluminescence
thermogram. The peaks in the glow curve may be correlated with trap depths
responsible for thermoluminescence emission. The main dosimetric peak of the
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LiF :Mg,Ti glow curve between 180ºC and 260ºC is used for dosimetry. The
peak temperature is high enough so as not to be affected by room temperature
and still low enough so as not to interfere with black body emission from the
heating planchet.  The total thermoluminescence signal emitted (i.e. the area under
the appropriate portion of the glow curve) can be correlated to dose through
proper calibration. Good reproducibility of heating cycles during the readout is
important for accurate dosimetry.  The thermoluminescence signal decreases in
time after the irradiation due to spontaneous emission of light at room temperature.
This process is called fading. Typically, for LiF :Mg,Ti, the fading of the dosimetric
peak does not exceed a few percent in the months after irradiation.  Good
reproducibility of heating cycles during the readout is important for accurate
dosimetry.  The thermoluminescence dose response is linear over a wide range of
doses used in radiotherapy, although it increases in the higher dose region, exhibiting
superlinear behavior before it saturates at even higher doses.  TLDs need to be
calibrated before they are used (thus they serve as relative dosimeters). To derive
the absorbed dose from the thermoluminescence reading a few correction factors
have to be applied, such as those for energy, fading and dose response non-
linearity.  Typical applications of TLDs in radiotherapy are: in vivo dosimetry on
patients (either as a routine quality assurance procedure or for dose monitoring in
special cases, for example complicated geometries, dose to critical organs, total
body irradiation (TBI), brachytherapy); verification of treatment techniques in various
phantoms (e.g. anthropomorphic phantoms); dosimetry audits (such as the IAEA-
World Health Organization (WHO) TLD postal dose audit programme); and
comparisons among hospitals.

  The thermoluminescent materials used in the industry7-11  have three major
areas; radiation dosimetry, age determining and geology. The radiation dosimetry
measures the dose that is absorbed by the sample that is exposed to irradiation.
Radiation dosimetry has three subgroups; personnel dosimetry, medical dosimetry
and environmental dosimetry. The first one focuses on body parts that are exposed
to radiation such as hands, arms or feet while the whole-body focuses on the
tissue below the surface of the body or the critical organs. It measures the dose
absorbed in these parts of the body by dealing with gamma and X- rays (greater
than 15 keV) and neutrons which are penetrating rays. Tissue dosimetry, which is
also called skin dose,measures the dose absorbed by skin. However rather than
dealing with penetrating radiation, it focuses on non-penetrating radiation such as
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beta particles or <15 KeV Xrays. In order for these measurements to be done, a
TLD material that is equivalent to the human tissue is needed. The TLD material
should absorb the same dose or amount of radiation as the human tissue would
do in the same area within the same radiation levels.

5. Development of luminescence dating

A major development in luminescence studies occurred when TL dating was
extended to determining burial ages of unheated sediments. The evolution appears
to have followed two parallel paths, one in the West and another in former Eastern
Bloc countries. However, it seems there was minimal interaction between the two
geographical regions, especially in the early stages. In the West, some of the earliest
work includes a study  that looked at TL signals of deep-sea sediment that mostly
comprised for a miniferal shells. The investigators  considered the signals to be
from calcite and noticed that the TL intensity increased with depth. Later, another
study  investigated a deep-sea sediment core that comprised predominantly siliceous
plankton and reported results similar to those presented earlier12,13.

Thermally stimulated luminescence (TSL), also known as TL, is considered to
be a reliable technique used in radiation dosimetry. Detection of defects and
impurities, even in ppm level of solids, is possible with this method. A powder
sample is irradiated by a known strength of light radiation for different time periods
and then removed. The irradiated material is then heated at a constant heating rate
so that it starts emitting thermal radiation. The intensity of the emitted radiation is
measured as a function of temperature of the sample, and a TSL glow curve was
plotted. The position of the peaks on the temperature scale is a measure of the
energy depth of the trapped electrons in the solid, whereas the area under the
peak indicates the number of electrons transferred into these traps by exciting
radiation. The knowledge of traps with their distribution in the band gap of solids
is essential to understand the luminescence process that can be obtained by TSL
studies. With the advent of nanotechnology, there is a considerable amount of
research for new nanocrystalline phosphor materials with better TSL and dosimetric
properties14.

Thermoluminescence (TL) is a technique to measure the intensity of luminescence
of a sample when it is irradiated by UV radiation, X-rays, -rays, or an electron
beam as a function of temperature. This technique is widely used in mineralogy
and geology, and for dating anthropological and archaeological samples. It is a
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stimulated emission process occurring when the thermally excited emission of light
follows the previous absorption of energy from radiation. Energy absorbed from
ionizing radiation (alpha, beta, gamma, cosmic rays) frees electrons to move through
the crystal lattice, and some are trapped in imperfections in the lattice. Subsequent
heating of the crystal can release some of these trapped electrons with an associated
emission of light.

     The TL technique has been found to be useful in dating specimens of
geologically recent origin where all other conventional methods fail. It has been
found to be highly successful in dating ancient pottery samples. The main basis in
the Thermoluminescence Dosimetry (TLD) is that TL output is directly proportional
to the radiation dose received by the phosphor and hence provides the means of
estimating the dose from unknown irradiations. The TL dosimeters are being used
in personnel, environmental and medical dosimetry. During the last two decades,
OSL based dosimeters have also been used for various applications. Natural and
induced TL signals can be used to explore mineral, oil and natural gas.

     In many parts of the world there are deposits of wind-blown silt, known
as loess, which has been transported long distances high up in the atmosphere.
These deposits are usually associated with different phases of glacial history so
that their dating is of considerable importance to geologists.  Another application
has been to sand dunes, by the research group of Singhvi at Ahmedabad15 where
they successfully computed  the dating of dust extracted from glaciers.     Successful
attempts were made to obtain the results from deep-sea material and from a variety
of glacial sediments. Throughout the world this field is under very active
investigation.
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A Random walk Through Statistical Physics
on the Crutches of the Ideal Gas

Jayanta K Bhattacharjee
School of Physical Science

IACS, Kolkata

The physical science that attracted a lot of attention since the beginning of modern
civilization was dynamics-primarily dynamics of the sun, the moon and the stars.
Centuries of continuous efforts culminated in a very reasonable understanding
reflected in Galilean relativity1 and Newton’s laws of motion and gravitation2 in the
seventeenth century, Galilean relativity asserted that all observers moving with constant
velocity relative to each other (inertial observers) would see the same laws of
dynamics. Newton’s law expressed this in a quantitative form by the statement that
if the velocity (we are assuming that the motion is in a D-dimensional space with
D = 1 a straight line, D = 2 a plane and D =3 our usual visible space) of a point
particle (meaning usually the centre of mass a rigid body) of mass ‘m’ is v in an
inertial frame and the external force (net) on it is F

 (the components of any vector
X


will be denoted by Xi , where i =1, 2, ...D as the case may be), then in terms of
the momentum p mv

  , one has
  i i ip mv F  ...    (1)

if one considers a set of point particles which are subject to an external force 

F  and

interact with each other through a pairwise interaction 

ijF  (this is the force on the

i-th particle due to the j-th one and the sign is reversed if the ordering of the subscript
is interchanged unless one has velocity dependent forces), the above equation
becomes

 i i ijmv F F  ...    (2)
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An example of a pairwise force is the gravitational force between two masses

1m  and 2m  located at positions 1
r  and 2

r . This force is attractive and given by

  3
1 2 1 2 1 2/ .Gm m r r r r 

     Historically this was the first step in sorting out the plan-
etary motions.

In a different setting altogether, the seventeenth century saw a different kind of
advancement. Experiments by Boyle3 (1662), Charles4 (1783), Gay-Lussac (1802)
and Dalton5 (1802) established certain quantitative facts about qualitative relations
between the pressure, volume and temperature of a gas. Boyle established that at a
constant temperature the pressure of a fixed amount of gas (let us say one mole for
convenience) is inversely proportional  to its volume. This means if P is the pressure
of one mole of a gas occupying a volume V, then at a fixed temperature T,

PV = C (a constant) ...    (3)

Charles and a little later Gay-Lussac studied the volume expansion of a fixed
mass of gas at fixed pressure with increassing temperature and found that
for all gases a single degree centigrade rise in temperature causes a fractional change
of nearly 1/273 in the volume of the gas. This means that if the gas occupies a
volume 0V  at zero degree centigrade, then its volume at ‘t’ degrees centigrade is

0 1
273

    t
tV V  ...    (4)

For two different temperatures 1t  and 2t , we have

1,2
1,2 0 1

273
 

   

t
V V  ...    (5)

leading to

1 1

2 2

273
273





V t
V t  ...    (6)
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if we now define a new temperature scale (absolute temperature) T as (273 + t)
degree absolute when t is in degree centigrade, then clearly Eq. (6) can be
written as

1 2 1 2V V T T  ...    (7)

or V / T = constant if the pressure is held fixed. It should be noted that the definition
of absolute temperature makes it clear that there can be no temperature lower than
T = 0 and hence no temperature lower than-273 degree centigrade. Thus we learn
that for a given mass (or moles) of a gas the volume V is inversely proportional to the
pressure P at constant temperature T and directly proportional to the temperature T
at constant pressure, leading to the relation /V T P  for a given mass of gas. If the
given mass ‘m’ corresponds to ‘n’ moles (n=m/M, M being the molecular weight of
the gas), then one has

PV nRT  ...    (8)

where ‘R’ is a universal constant (i.e. same for all gases). Relations between P, V
and T are called equations of state and at this stage such relations are the result of
experimentations.

Experiments with gases gave rise to the study of ‘processes’ since changing the
volume at constant temperature (Boyles law) is not easy to achieve experimentally
since an attempt to change the volume should change the temperature. Care has to
be taken to ensure that the system has enough opportunity to exchange heat with the
surroundings and recovers its original temperature at every moment to the expansion
‘process’. We will return to this issue a little later in the narrative. Now, we jump to
the beginning of the nineteenth century when Dalton5, standing on the shoulders of
Democritus6, put forward thye atomic structure of matter where a mole of gas was
supposed to contain a definite number of smaller units called atoms (this for a
monotonic gas, for a diatomic gas like oxygen the unit would be a molecule which
would have an internal structure made up of two atoms). Accordingly, the constant
R can be written as R = kN where N is the number of molecules in one mole (universal
number i.e. same for all gases) and the constant ‘K’ has been named Boltzmann’s
constant). The constant N is approximately 6x1023 At this point it is legitimate to
ask if the pressure P exerted by the gas on the surfaces of the container of volume V
in which it is enclosed can be calculated using Newton’s law2.

A RANDOM WALK THROUGH STATISTICAL PHYSICS ETC. 125



We consider one mole (N molecules) of the gas enclosed in a cube of volume V.
In the simplest model we ignore the mutual interaction between the molecules. One
still has to address the problem associated with the large (virtually infinite) number of
molecules. To calculate the pressure using Newton’s, we have to follow the dynamics
of each of the individual molecule and find out how many collisions occur in an unit
time interval between the molecules and an elementary area dA of any chosen wall.
Since the pressure is uniform, this number is independent of the position of the
element dA. the collisions with the wall can be taken to be elastic and hence the
momentum transferred to the area per unit time can be calculated. This yields the

normal force dF on the area dA leading to the pressure ,
dFP
dA

The calculation

involves a number of assumptions which lead to a simplified but logically consistent
picture.

While we adopt the simplification of ignoring the interaction forces between the
molecules we still have the problem of dealing with virtually an infinite number of
them and each trajectory has to be monitored separately. This is also insurmountable
and hence comes another reasonable proposition; at any instant all velocities will be
there since there will be some molecules travelling slowly, there will be a larger
number with intermediate speeds and there will be a few with high velocities. This
means we can adopt a probabilistic picture where we specify only the number dn(v)
of molecules having velocities between v and v + dv where by ‘v’ we mean any of

the three components ,x yv v  or zv . Thus we specify the number of particles per unit

volume ( )x xn v dv  which have the x-component of velocity lying between xv  and

x xv dv  and similarly specify ( )y yn v dv and ( ) .z zn v dv  We have by this procedure
surreptitiously shifted from a deterministic to a probabilistic description where what
we specify is ( ) ( ) /x xn v Np v V ,  where N is the total number of particles in

volume V and ( )xp v  is the probability (normalized to unity) of the

x-component to the velocity lying between  xv  and .xdv

We need another plausible assumption- the number ( )xn v  does not change with
time. One can appreciate this by considering the range of reasonable velocities for
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these virtually point particles lowest being around 10 cms/sec (this is already
impossibly low) and the highest around ten killometres per sec (impossibly high) in a
given direction. If we break up the available velocity space into millions of small
units (1010 say) then each unit ( a box in velocity space) would have a lateral dimension
of 0.0001 cm/sec which is a very small box alright in velocity space. The number of
particles in this small unit for an even distribution is 1010 assuming a total of 1020

particles present. This is still a very large number and one can imagine that in a given
time interval only the particle near the edges can move in or out and the particles at
the edges will be a very small number compared to the large total number in the box.
Hence it would be very difficult to change the occupation number in a box and we
will find ( )xn v  virtually independent of time. We choose the area dA to lie on one of
the surfaces of the cube parallel to the y-z plane. The number of particles with x-
component of velocities lying between xv  and x xv dv ( independent of values of

yv  and zv ) and striking the area dA in unit time is half the number of particles
contained in the volume xv dA  (the other half travels in the opposite direction). The
elastic collision reverses the sign of the velocity and the momentum transferred by
the wall to the molecules in unit time in the x-direction is 2 ( ) / .x x xNmv p v dAdv V
We now need to integrate over all possible values of xv  to find the total momentum
transferred in unit time due to collisions with dA and hence the force dF exerted
(Newton’s third law) on the element dA is given by

2 2( )x x x x
mN mNdF v p v dv dA v dA
V V

   ...    (9)

where 2
xv  is the average value over the probability distribution. The fact

that there is complete isotropy (all direction x, y and z equivalent) implies

2 2 2 2 2 2 21 1 .
3 3x y z x y zv v v v v v v     

Hence,

2 22 1 2
3 3 2 3
mN N EdF dA v dA m v dA

V V V
   ...    (10)
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where 21
2

E N m v  is the total energy (in this case only kinetic energy) of the

N particle gas. Consequently the pressure exerted by the gas is given by

2
3

dF EP
dA V

  ...    (11)

The above equation could be identified with Eq. (8) for the mole of gas if

3 3
2 2

E RT NkT   ...    (12)

(for an arbitrary number ‘n’ moles of the gas N instead of being the Avogadro
number would be the actual number of particles which is nN). This implies that the
average kinetic energy per particle has to be identified as 3kT/2. This is certainly a
property of the distribution of velocities which leads to the question : what is the
probability distribution ( )p v of velocities of molecules.

The first thing that one can say is that ( ) ( )p v p v 
   and hence p(v) is a function

of v2 alone. For a given v2, we have the three independent components, vx, vy, vz
with the constaint

2 2 2 2
x y zv v v v   ...    (13)

Written in terms of vx, vy and vz , we must have

       2 2 2 2
x y zp v f v f v f v ...    (14)

since all the velocity components are independent of each other and isotropy ensures
the same function f(v) for each component. We now need a criterion for determing
the function p(v). We need the function to be stable against small perturbations in
the agruments vx, vy and vz. Hence for small variations in the agruments the change
in p(v) must be zero. The variation in the arguments have to be subject to the condition
of Eq. (13). From Eq. (14).

2 2 2( )  ( ) ( )  ( )x y zln p v ln f v ln f v ln f v   ...    (15)
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If we vary  vx, vy, vz and  p(v) does not vary, then we get

     2 2 2
1 1 1 0x y z

x y zx y z

f f fv v v
v v vf v f v f v
  

  
  

  
 ...    (16)

subject to
0x x y y z zv v v v v v      ...    (17)

To make the variation in the three variables independent of each other, we use a
Lagrangian multiplier to write

1 1 1 0x x y y z z
x y z

f f fv v v v v v
f v f v f v

     
      

               

...    (18)

We choose the multiplier to write

1 0
( ) x

x x

f v
f v v




 


...    (19)

With the x-component gone, the other two components can be independently
varied and hence each of the remaining two bracketed terms in Eq. (18) must be
separately zero. Thus we have relations idential to Eq. (19) for the y and z components.
Integrating Eq. (19), we get

2

2
1( )

v x

xf v C e



 ...    (20)

where C1 is a constant. The corresponding results for ( )yf v  and ( )zf v  are given
by

2

2
2( )

v y

xf v C e



 ...    (21a)

2

2
3( )

v z

zf v C e



 ...    (21b)
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From Eq. (14), we get the distribution p(v) as

2

2( )
v

p v Ce



 ...    (22)

where C is a constant. The constant is evaluated from the fact that the probability

distribution needs to be nomalized which means we must have 2

0

4 ( ) 1.v p v dv



This yields

3/2

2
C 


     ...    (23)

The average value of v2 works out to be

2 3v


 ...    (24)

For this averave value to be consistent with the experimental equation of state
PV=NkT, we need = m / kT and this leads to he distribution function

23/2
2( )

2

mv
ktmp v e

kT

    
...    (25)

This distribution of velocities is generally known as the Maxwell-Boltzmann
distribution8, 9.

We now have a picture of what is called an ideal monatomic gas. This gas is
characterized (as gases always are) by its pressure P, occupying volume V and
temperature T. However these macroscopic quantities that characterize a gas are
not independent. They are related by the equation of state PV=nRT (n is the number
of moles). The temperature is related to the energy of the gas by the relation
E=3nRT/2. Ideal gas means that there is no interation between the molecules and
E refers only to the kinetic energy. The monatomic gas is structure-less and ideal
point particles. A diatomic molecule on the other hand would have an axis connecting
the two atoms which constitute the molecule. The axis would be capable of rotating
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in space and also there could be stretching and contracting along the axis. This
would change the energy expression (Eq. (12) ) but would not change the equation
of state  (Eq. (18) ).

The macroscopic or thermodynamic state of the system is characterized by only
two independent variables because of the equation of state and we shall use a (V,T)
space for the macroscopic space of the gas for our convenience (Fig. 1). We not
ask the question : how does one change the thermodynamic state of the gas. The
usual answer is by heating it. Heating makes the gas hotter (changes its energy)

Fig. 1
The thermodynamic state space of a fixed mass of gas in

terms of its volume and temperature.

but can also make the gas expand.
The expansion can be viewed as work done by the gas (Fig 2). The gas is

kept in a cylinder with a movable piston. Heating the gas moves the piston up

Fig. 2
The work done by a gas as it exands on heating.



T

V

 (V2 , T2)

 (V1 , T1)







V2
V1
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from the initial position (volume 1V ) to the final position 2( )V . At any instant when
the volume of the gas is V and its pressure P, the force exterted on the piston is PA,
where A is the cross sectional area of the piston. If the piston now moves up an
infinitesimal distance dz (pushed up by the gas), the work done by the gas is
PAdz = PdV (dV is the change in volume). If the infinitesimal work done is dW then

dW = PdV ...    (26)

and the total work done in the process is

2

1

V

V

W PdV  ...    (27)

The integral cannot be evaluated in general since pressure P cannot be expressed
as a function V alone in general. In the expansion process when the gas does an
infinitesimal amount of work dW, its internal energy changes by an amount dE as
well. In this case of the ideal gas it happens because we are heating the gas and
changing its temperature, for a real gas where inter-particle interactions are non-
negligible the change in volume alone can induce a change in energy. The work done
and energy change are occuring because the gas is being heated and hence the
infinitesimal heating process can be quantified by a ‘‘heat energy” dQ and a global
energy conservation required

dQ = dE + dW   ...    (27)

which is the first law of thermodynamics.

It is clear from Eq. (27) that the integral of dW will depend on the path that
connects the two end points in Fig 1. This can easily be checked by taking a path

from  1 1,V T  to  1 2,V T  and then from  1 2,V T  to  2 2,V T  as path 1 (work done

is 2nRT 1n 2

1

V
V

 
  

 and as path 2 from  1 1,V T  to  2 1,V T  followed by  2 1,V T  to

 2 2,V T  (work done is 1nRT  In 2

1

V
V

 
  

). The integral of dE between the two end
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points is not dependent on the path and is simply given by 2 2 1 1( , ) ( , )E T V E T V .
The integral of dQ is path dependent because of the path dependence of the integral
of dW.

We now divide out Eq. (28) by T and get (using the energy expression for the
ideal gas and its equation of state)

3
2

dQ dE PdV dT dVnR nR
T T T T V

    ...    (29)

where the right hand side can easily be integrated from the initial to the final point
without any dependence on the path used. We have

2
2 2

1 11

3
2

T VdQ nR ln nR ln
T T V

   ...    (30)

independent of the path taken between the initial and final points. The quantity
dQ/T which we denote by dS is thus a perfect differential and S is known as the
entropy of the system. For n moles of an ideal gas at temperature T and occupying
volume V, the entropy S is

3/2
0S nR lnT lnV S    

...    (31)

The constant 0S can depend on the number of particles in the gas considered
sine the particle number is constant during the process. This is necessary for the
entropy to have the desired extensive property (i.e. if the number of particles are
increased keeping temperature and density fixed then the entropy must increase
proportionately)

We now return to the molecular picture of the ideal gas and see how the entropy
is related to that. To do this we need to return to Newton’s laws and understand
how to visualize the dynamics. It is a common misconception that how a particle
moves in time can be understood by knowing the position ‘x’ as a function time ‘t’
(assuming one dimensional motion to begin with). But this is only half the story since
if you were given the force F(x) acting on the particle and the position of the particle
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at t=0,  you would not be able to find x(t). You need to be given x  as well at t=0
before you can find x(t) and  hence solving Newton’s law entails finding x(t) and
x (t) at every instant after you have been given their values at t = 0. The Newtonian
‘‘state of a particle” of mass ‘m” moving in one dimension is specified by its position
and velocity (for technical reasons it is the ‘‘conjugate” momentum rather than the
velocity) and the most convenient form of Newton’s law for this one dimensional
motion is /x p m  and / .p F m  These are two first order coupled differential
equations and constitute what is known as a dynamical system (two dimensional in
this case because there are two variables). In three dimensions, Newtonian dynamics
is describe by a six dimensional dynamical system. The ‘‘state” is a set of six variables
x, y, z and the corresponding components ,,x y zp p p  and the dynamics needs to be
visualized as the motion of a point in a six dimensional state space more
commonly known as phase space. There is a technical complication in that it is
very often impractical to use Cartesian co-ordinates. One uses what are called
generalized co-ordinates (co-ordinates of convenience). For motion of a particle in
a plane caused by the pull of a very massive gravitational object (approximated
stationary let us say) one would rather use the polar co-ordinates ‘r’ and . Denoting
the generalized co-ordinates by a set of ‘q’s 1 2 3( , , .....)q q q  and defining an object
called a Lagrangian L defined as ‘‘kinetic energy potential energy” (written in terms
of the q’s and their time derivatives), one constructs the conjugate momentum as

i
i

Lp
q



 

 and in terms of the ‘q’ and ‘p’, Newton’s laws can be written as a set of

first order differential equation

i
i

Hq
p





 ...    (32a)

and

i
i

Hp
q





 ...    (32b)

where i iH p q L   is called the Hamiltonian of the system. For a single particle in
a three dimensional space (D=3) i=1, 2 and 3. For two particel in D=3, we will
label the co-ordinates as i=1, 2, 3, 4, 5 and 6. The dynamics needs to be visualized
in a six dimensional space where it is pictured as the motion of a point (the state) in
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the six dimensional space. For N particles in D=3 the phase spae is 6N dimensional.
When one is discussing thermodynamic system ‘N’ is very large but the simplification
of this description is that one is simply tracking the evolution of a point.

The complication and simplification of statistical mechanics comes from the picture
of the evolution of the phase point. This complication was noticed for a single particle
(started off from some point with a velocity in the arbitrary direction) for a motion in
a stadium10-12 where the particle simply reflects elastically off the walls of the stadium
(Sinai billiard). The motion of the particle is restricted in a finite part of the four
dimensional phase space but does not ever settle down. As time goes on the trajectory
starts filling the available phase space volume more and more densely. The motion is
ergodic at long times meaning that if one watches the trajectory for a time T, the
fraction of time that the trajectory spends inside a given elementary volume of phase
space is asymptotically the same as the fraction of points of the trajectory in that
elementary volume when compared to the total number of observations of the state
made in the time T. Focussing on a particular volume 1 2 1 2dq dq dp dp  of phase space,
one observes the motion for a time T making observation of the ‘‘state” of the
particle at definite intrvals so that a total of N points are obtained in time T. If ‘dt” is
the time that the particle spends in the designated box during the observation period
and ‘dn’ is the number of observed points of the trajectory in that box over that
period T, then for T  , the fraction dt/T  and dn/N tend to become equal
according to the ergodicity requirement. The motion in the 6N dimensional phase
space for the thermodynamic system is assumed to be ergodic and that sets up the
statistical description where instead of talking about the position and moments of
each individual particle one talks about the probability of its being in a certain region
of the large dimensional phase space.

Statistical mechanics emerges then as the microscopic pictre behind the
thermodynamics. The thermodynamic description is macroscopic and uses a few
variables like pressure, volume and temperature. The number of particles (N) involved
is huge and of the order of 10 and their dynamics would be described by the evolution
of a point in a 6N dimensional space denoted by  . The infinitesimal volume element
in this space is

3 3

1 1

N N
i i

i i
d dq dp

 
    ...    (33)
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in this system with large number of particles bouncing elastically off the walls of the
enclosure in the simplest possible situation of free particles (ideal gas) the dynamics
has the ergodic property discussed in the context of Sinai billiard in the previous
paragraph and eventually fills the entire allowed volume of the 6N dimensional phase
space. In the large time limit one adopts the point of view that the system will be

described by the time independent density     ,eq i iq p  which describes what

is the probability of finding the system in the phase space volume .d  This is the
basic set-up of the science of statistical mechanics- a statistical description of
microscopic states corresponding to a given thermodynamic or macroscopic) state.
The microscopic evolution of the system of 6N particle is finally described by a time
independent distribution

         , , ,i i eq i i
i
Lt q p t q p 


 ...    (34)

Instead of following the individual particles we have taken a coarse grained

(statistical) view but one is not yet out of the woods since who will calculate .eq

This is handled by the single most important postulate of statistical mechanics : all
microstates corresponding to a given macrostate are equally probable. Hence
if the total accessible volume of phase space corresponding to a given macrostate is
 , then

    ,eq i iq p  constant 1



...    (35)

The normalisation of the distribution is ensured by the above assertion.

We now return to the ideal gas of N particles confined in a volume V and
having a total energy E. We want to calculate ( , )E V  the total volume occupied
by the gas in phase space. Since the particles are all independent, each can
occupy the whole available physical volume V independent of the other particles,
Hence

3 3 3
1 2.......... N

Nd r d r d r V    ...    (36a)
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The momenta 1 2, ....... Np p p    satisfy the constraint 2 2i
i

p mE  and hence

3 /2
3 3 3 (3 1)/2

1 2
2.......... (2 )

3
2

N
N

Nd p d p d p mE
N

 
   

   ...    (36b)

which is the volume of a 3N dimensional sphere of radius 2 .mE  Consequently
from Eq. (33)

3 /2( , , ) (2 ) / (3 / 2)N NE N V V mE N   ...    (37a)

Note that the  ’s on the right hand side of Eqs. (36b) and (37a) are gamma
function. Taking logs in Eq. (37a), we get (n is the number of moles)

3 2( , , )
2 3

Ek ln E N V nR ln V ln
N

     
  + constant  ...    (37b)

Using the fact that for an ideal gas E=3nRT/2 and remembering the expression
of entropy from Eq. (31), we get

3/2
0 ( , )k ln nR ln T lnV S S V T        ...    (38)

This is the connector between the macroscopic (ritht hand side) and microscopic
(left hand side) pictures of the ideal gas. We will tacitly assume in this article that this
equality holds for interacting systems as well. But Eq. (25) had an even greater
insight. It says that in equilibrium the number of gas molecules having an energy

2 / 2,mv   is proportional to exp ( / ).kT  The connection between Eq. (25)
and the tenets of statistical mechanics as discussed till now requires a little
embellishment to make Eq. (25) accessible. To begin with re-write Eq. (25) in terms
of the energy .  To this end we define the number of particles having energy between
  and d  in the physical volume 3d r  as ( )n   and obtain from Eq. (25)

23/2
22( ) 4

2

mv
kTmn d n e v dv

kT
  



    
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3/2
1/2 1/212 kTn e d

kT



  
     

 / ( )kTe g d               ...    (39)

We now consider the above formula in a discrete picture. If we consider the
energies accessible to a single molecule as a discrete set of numbers i  and think of

( )g d   as the number of available states g, in the immediate vicinity of the energy
,i  then Eq. (39) reads

/i kT
i in g e  ...    (40)

The total number of particles N is expressed as

i
i

N n  ...    (41a)

and the total energy is given by

i i
i

E n   ...    (41b)

The final task is to calculate the volume of phase space. This translates to solving
the combinatoric problem of finding the number of ways in which the N particles can
be distributed in the available energy states. For the i-th level we can take the first

particle and put it in any of the ig  slots. This can be gone in ig  ways. We now take
the second particle and for every position of the first particle, this can be accommodate

in ig  ways. The number of possible arrangements now become 2
ig . This can be

continued for all the in  particles and so we can put the in  particle in ig  boxes in
in

ig  ways. The particles are all identical and hence the number of recognizable
possibilities is / !.in

i ig n  [There is a very important caveat to be noted at this

state- in  and ig  are assumed to be large numbers with ig  >> in . The formula
would not work for in = 2, ig  = 3 as an example. The correct answer can be
found in Eq. (81).] For a specific arrangement for a specific value of ‘i’, we can

138 JAYANTA K BHATTACHARJEE



have all the recognizable possibilities for another value of  ‘i’ and hence the total
number of configurations which is the total available  volume of phase space is

( , )
!

in
i

i

g
N E

n
   ...    (42)

with the constraints shown in Eqs (41a, b). The problem is what is   in equilibrium.
We imagine as the system evolves in time the occupation numbers in  change and
when we have reached equilibrium they do not change anymore or more correctly
the small changes that may occur in them do not change the value of  anymore. It
reaches a stationary value which is obviously a maximum. It should be noted that
we are assuming that the occupation number of the small interval around
the energy i  is capable of changing and in equilibrium assumes a constant
value on the average. In principle small fluctuations around the average is
allowed and also the in  that we consider here are the average occupancies

in the intervals. This particular set of ig  states are capable of exchanging
energy and particles with the other sets and eventually settle down to a
situation where there are in  particles on the average each with an energy

i . Hence, for equilibrium, we maximize   or rather for convenience ln   subject
to the constraints of Eqs (41a, b). Using Stirling’s approximation for gamma function
we have

 ( , ) i i i i i
i

ln N E n ln g n ln n n     ...    (43)

with

( / )i i i
i

ln ln g n n   ...    (44)

subject to

0 and 0i i i
i i

n n     ...    (45)
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Using two Lagrange multipliers   and , we have

0i
i i

ii

gln n
n

  
 

      ...    (46)

Appropriately choosing  and , one makes all the 0in   independently and
hence

i
i in g e e    ...    (47)

which agrees with Eq. (40) for 1e    and 1 .kT   Of course the constants 
and  need not be determined by comparison with Eq. (40). We can use Eq. (47)
to calculate the total number of particles and the average energy. To do so, we
recognize that for free particles the number of available states near a given momentum
p  is proportional to the phase space volume 3 3 .d rd p  The number of states should

be dimensionless and it is customary to make this element dimensionless by dividing
by 3h  where ‘h’ is Planck’s constant. Thus,

23 3
2

3

p
md rd pdn e e

h


   ...   (48)

Integrating,

                                

2

2 2
3

0
4

p
mVe

N p e dp
h




 
 

3/2

3
2 2V me
h

 


  
   

 ...    (49)

The total average energy is

   

22
2 2

3
0

4
2

p
mVe p

E p e dp
mh




 
 

3/2

3
2 1 33

2
Ve m N

h

 
  

  
   

...   (50)
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This identifies 1 kT   since E=3NkT/2 and from Eq. (49), it follow that

3/22

2 2
N he
V mkT




  

   
 ...   (51)

Hence the number of non-interacting particles with energy between   and

d   2 / 2p m   and located in the elementary volume 3d r  is

3/22 3 3
/

3( )
2 2

kTN h d rd pn d e
V mkT h

 


 
   

 ...   (52)

with this we regain the Mxwell-Boltzmann distribution. With the energy given by Eq.
(50) and the entropy by ( , ),S k ln E V   the thermodynamic free energy F is
obtained as F E TS   and all other thermodynamic properties follow..

We now turn to another interesting system of the mid-nineteenth century and see
how it can be thought of as an ideal gas as well! This is the issue of black-body
radiation. Radiation from a body at temperature T was extensively studied in the
second half of the nineteenth century. If the radiating body remained at a definite
temperature T, then clearly it was absorbing as much radiation per unit time as it was
emitting and hence was in thermal equilibrium. The total energy emitted was found

to be proportional to 4T and one could write the energy emitted (E) per unit time as
4 ,E T  where the proportionality constant  is known as Stefan’s constant13.

Of  particular interest was the spectral decomposition of the energy (it gave the
amount of energy associated with a given frequency ). Denoting by g()d the
number of modes of vibration corresponding to the frequency range  to + d,
we can define the spectral density of the energy in two different ways by

( ) ( ) ( )E E g d E d        ...   (53)

The challenge was to find E(). That the radiation was a wave (light wave) was
known and hence if one considered a box shaped enclosure for the radiation with
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sides of length 1 2 3, , ,L L L  then for the radiation to ‘fit’ into the box one would need
to have an integer number of wavelengths in each direction i.e.

i iL n     (i = 1, 2, 3) ...   (54)

The integers in  would have to be very large since .L   The frequency   is
related to the speed of light by the usual relation 2 / .ck c     A particular
mode of vibration is characterized by the three integers .in  A change in the set
implies a change in wavelength (consequently frequency as well) and corresponds
to a different mode of vibration. An elementary unit for the mode of vibration is given
by

2
21 2 3

1 2 3 3 3 2 34
8 2
L L L Vdn dn dn d d

c c


  
 

   ...   (55)

and hence (including a factor of 2 for the modes of vibration of a transverse
wave)

2
2 3 ( )VE E d
c

  


  ...   (56)

What could be the origin of this energy? The assumption made by Rayleigh and
Jeans14  was that it came from the vibration of the charged particles responsible for
the radiation. Each mode of vibration is associated with an energy kT (half from the
kinetic energy as we have seen for the ideal gas and half from the potential energy
which all vibrators have and the virial theorem ensures the equality of the two energies
for low amplitude oscillations) and hence (the history of this is rather confusing and
best discussed in Kuhn)

2
2 3

VkTE d
c

 


  ...   (57)

The integral runs from zero to infinity and is infinitely big showing that the Rayleigh
Jeans idea is incorrect. The experimental curve of ( ) vsE    was accurately known
and Planck15 (1900) developed a heuristic picture of the energy generation process
to arrive at

( )

1kT

E

e



 



  ...    (58)
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which fit  the experimental data perfect ly. For high temperatures,
( / 2 ),kT h     ( )E   kT  and agrees with the picture proposed by

Rayleigh and Jeans. For low temperatures ( )kT    Eq. (58) reduces to

3
2

2 3( ) ( ) kTVE E e
c




  



 

 ...    (59)

and could not be understood on the basis of anything known in 1900. The relevant
picture came in 1905. The key idea was to look at thermodynamics and in particular
the entropy–the connector between thermodynamics and the microscopic world.
The entropy would be determined by the energy E and volume V. Since we will
keep the volume fixed, we need to worry about the energy only. If one carries out a
spectral decomposition of the entropy

 ,S E d      ...   (60)

For equilibrium, we have learnt that entropy needs to be stationary (maximum)
and hence maximize the entropy subject to constant energy i.e.

0S d     ...   (61)
subject to

( ) 0E E d      ...   (62)

Using a Lagrange multiplier 

  0E d    ...   (63)

leading to E








 independent of . Since we are considering a constant volume

process we have .T S E   Using Eq. (60).

  S Ed Ed E
E


      


  
   ...   (64)
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identifying as 1T  . We note from Eqs. (59) and (63) that

3 3
1 2

2 ( )
k Vln

E T E c
  

  


 





 ...   (65)

Integrating,

3 3

2 3 2 3( ) k V kE Vln E E ln E ln
c c E
 

 
  

    
           

 
 

                
3

2 3 ( )

E

Vk ln
c E


 

 
  

 


...   (66)

If we now consider a process in which the volume of the box enclosing the
radiation is changed from 1V  to 2V  keeping E  fixed, then the change in entropy at
frequency  is

2

1

( )
( )

VES k  ln
V





 

  ...    (67)

Comparing with Eq. (38) for an ideal gas, we infer that if /E   is identified as
the ‘‘number of particles ( )N  ’’ at frequency  then on integrating Eq. (67) over
all frequencies one regains the thermodynamic relationship

 2 1/S kN ln V V  ...   (68)

at constant energy. Hence we say that

  ( )
E

N








 ...   (69)

can be interpreted as saying that radiation at frequency  can be thought of as
consisting of ‘‘quanta” (generalized notion of particle) each carrying an elementary
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energy unit   (Einstein16 1905). This explained the photo-electric effect and the
quanta came to be known as photons (the real meaning emerged thirty years later)
Clearly the photons have no ‘‘number conservation”. They can be absorbed or
emitted by any material (ignoring niceties like vacuum fluctuations). A year later
Einstein17  invoked (1906) an identical picture for the vibrations in a solid to explain
why the specific heat of a solid vanishes as 0.T 

We now skip twenty years to a period where it became well established that if
one wanted to describe particle which are very small, then Newtonian dynamics
was not adequate. ‘‘Very small” had a quatitative meaning and it meant that if for a
particle of mass ‘m’ moving with a momentum ‘p’ one constructed the length scale

/ ,h p  then this length would be of the order of the other relevant length scales
like the size of the particle or the separation between two particles...etc. Since at a
temperature T, the momentum of the particle is of the order of ,mkT the scale 
can be estimated as /h mkT which can clearly be very big for very small ‘m’ or
very low temperatures. As for the length scales relevant for the particles, it could be
their size l or if the number density of the particles is n=N/V, then it could be the
quantity 1/3.n  This length scale could become very small for n >>1. Thus, the new
world order of dynamics would become absolutely relevant at very low
temperatures or at very high densities. This length scale (postulated de Broglie in
1924 in a bid to construct a ‘dual’ to the Einstein picture of particle like properties
of radiation) was the wavelength associated with every material particle which
could also be thought of as a wave.

The breakdown of Newtonian dynamics was supported by theoretical
developments employing the wave picture and a host of experimental findings which
established that under the appropriate circumstance a single particle could have
wave like properties18-20 that exhibit interference, diffraction etc. Hence the meaning
of the ‘state’ of a particle had to change. The Newtonian picture described the
particle by its position and momentum. If one had to admit the possibility of a particle
being capable of showig interferece, it’s ‘state’ had to have a phase (wave like
property) and hence the state had to be a complex number. Thus the ‘state’ of a
particle in quantum mechanics is described by a function ( . )r t   (wave function)21
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which has the physical interpretation that 2( , ) Dr t d r   is the probability of finding

the particle between r  and r dr
 

 in a D-dimensional space22. This probabilistic
description was forced by an examination of the process of locating the position of
a particle in the new mechanics and led to the conclusion (Heisenberg) that
determining precisely the position co-ordinate and the corresponding momentum
co-ordinate (corresponding means canonically conjugate) of a particle simultaneously
is not possible. Quantitatively, the errors x  and xp  (the x co-ordinate is being
considered) follow the constraint23.

/ 2xx p     ...   (70)

Similar relations hold for the y and z co-ordinates and for other conjugate variables
like angle and angular momentum etc.

We will restrict ourselves to equilibrium situations where there is no time
dependence and hence we will talk about position dependent wave function  ( )r 

alone. Since free particles are all we are interested in, the wave function of a free

particle in a D-dimensional space is .
/2

1( )
(2 )

ik r
Dr e




   and a measurement of

the momentum of the particle when it is in such a state yields p k
  .

If we are to do statistical mechanics then we need to deal with a large number
(N) of identical particles and the important quantity that we need to deal with is the
N-component wave function  1 2, , ..... Nr r r

  
. This function of N position variables

describes the wave-function of the N-particle system. If  r
  is the single particle

state (wave-function) labelled by some physical quantity  (momentum vector for a
free particle) then the N particle state will be assumed to be given by

 1 2 1
, , ... ( )

i

N
N ii

r r r r 


 
   

 ...   (71)

We will drop the subscript   from now on since we will be talking about free
particle states only in this article and ( )i r

 will denote a free particle state with
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momentum .nk

  Now comes an important constraint. Let us consider N=2 and

consider the two particle state 1 2 1 1 2 2( , ) ( ) ( ).r r r r  
     If we define an exchage

operator P with the property

1 2 2 1( , ) ( , )P r r r r 
     ...    (72)

then clearly

2
1 2 2 1 1 2( , ) ( , ) ( , )P r r P r r r r   
       ...   (73)

The possible eigenvalues of the operator P are +1. For every pair denoted by 1
and 2, we have the possible  1 2( , )r r

   are either (P = 1)

1 2 1 1 2 2 2 1 1 2( , ) ( ) ( ) ( ) ( )r r r r r r     
       ...    (74)

or (P = –1)

1 2 1 1 2 2 1 1 2( , ) ( ) ( ) ( ) ( )r r r r r r     
      ...   (75)

If the two states 1 and 2  are identical then the P = –1 wave function is identically
zero and hence for particles which correspond to the netgative eigenvalue of
the exchange operator, there cannot be two particles in the same quantum
state. For particles corresponding to the positive eigenvalue of P there is no
constraint on the occupancy of any state. The particles which cannot have more
than one particle in a given quantum state are called fermions while the particles
which can have arbitrary number of particles in a given quantum state are called
bosons.

We are now ready to tackle the quantum ideal gas where the N particle wave
function factors as shown in Eq. (71). We need to keep in mind that for the fermions
in the string of single particle wave functions of Eq. (71), all the states have to be
different. For the bosons it is possible to have the single particle state the same for all
the particles. Since these are free particles the momentum eigenstates are also the
energy eigenstates and for an eigenfunction .ik re

 
the energy eigenvalue is

2 2( ) / 2 .k k m    As before instead of a continuum of k-values we will consider a
discretized version and energies will be written as i  ad the number of available
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states around this particular energy will be denoted by .ig  If there in  particles in
these states, then we have the constraints

i
i

n N  ...   (76a)

i i
i

n E  ...    (76b)

Our goal will be to construct the total number of states available to the system
(the exact analogue of Eq. (42) ). Each ‘i’ is filled independently of the others and so
we need to calculate the number of ways of occupying the in  states at any ‘i’ and
multiply over ‘i’. However, the calculation will be different for fermions and bosons
and needs to be done separately :

(A)  Fermions : Each state can have only one particle and hence out of the ig

states available only in  will be occupied. The number of ways this can be done is

the number of ways in which in  slots can be chosen from ig  and this is just the

number  
!

.
! !

i

i i i

g
n g n  Hence the total number of  arrangement is

 
!

! !
i

F
i i i i

g
n g n

  


 ...    (77)

It has to be brne in mind that as in the Maxwell-Boltzmann situation in  and ig
are very large numbers and hence Stirling’s approximation can be used for them
including the difference i ig n  since the momenta are very very closely spaced and
the number of states available is much greater than the particles that will occupy
them. We work with ln F  as before to make use of the Stirling approximation and
get

[ ( ) ( )]i i i i i i i i i
i

ln g ln g n ln n g n ln g n      ...    (78)
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As before our picture is that for the equilibrium distribution, the total volume
occupied has to be insensitive to small variations in the individual occupation numbers
and hence we set the small variation 0Fln    under the constraints of N  and

E  set equal to zero. We find

i i
F i

i

g nln ln n
n

 
 

   
 

 ...    (79a)

and if this is zero subject to 0i
i

n   and 0i i
i

n   , then using the Lagrange

multipliers  and , we get

( ) 0i i
i i

ii

g n
ln n

n
  

 
   

 
 ...    (79b)

The constants can be chosen to make all the in  independent and hence each
coefficient vanishes in the above equation to give [24m 25]

1i

i
i

g
n

e 


...     (80)

(B) Bosons : We now have no restrictions in putting in  identical particles in ig

idential boxes. The number of ways this can be done is exactly the number of ways
in which ‘n’ identical letters can be put in ‘g’ identical letter boxes. This is solved by
drawing ‘g-1’ lines and treating the ‘g’ spaces thus created a ‘g’ boxes. We draw
the ‘n’ particles as ‘n’ dots and for g = 5 and n = 3 we show a typical arrangement
in Fig. 3

.   |  .  |           |  .    |

 Fig. 3

If we now treat te bars and dots as a total of n + g – 1 objects and simply
permute them then we have ( 1)!n g   arrangements of lines and dots and that
accounts for all the possible ways in which ‘n’ objects can be put in ‘g’ boxes. But
the dots are identical and so are the lines. Hence the dots can be arranged in nl ways
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which cannot be distinguished and the ‘g-1’ lines can be arranged in (g-1)! ways
which cannot be distinguished. Hence the total umber of recognizable independent

arrangements are 
( 1)!.

!( 1)!
n g
n g
 

  This allows us to write the total number of

configurations B  for the bosons as

                    ( 1)!.
!( 1)!

i i
B i i i

n g
n g
 

  


...     (81)

To find the equilibrium distribution it is convenient to maximize Bln   instead.
Remembering in  and ig  are both much greater than unity and one can always drop
it when working with the above expression for ,B  we get

   B i i i i i i i i
i

ln g n ln g n g ln g n ln n        ...     (82)

Following identical steps as for the fermions,

i i
B i

ii

g n
ln ln n

n
 

 
   

 
  ...      (83)

and maximizing Bln  with the constraints on the total number of particles and total
energy (as in the case of fermions), we get26

1i

i
i

g
n

e 


 ...     (84)

If we do not have the constraint of fixed number (that is creation and annihilation
of particles is allowed –they can be absorbed or emitted by any medium including
vacuum) then the constant  does not appear and we have

1i
i

i
g

n
e




    (no number conservation) ...     (85)
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For a continuous distribution of energies, Eqs. (80), (84) and (85) become after
defiing the chemical potential by the relation   

Fermions :

( )
( )( )

1
g dn d

e  
 

  


...      (86)

Bosons :

With number conservation : ( )
( )( )

1
g dn d

e  
 

  


...      (87)

Without number coservation :   ( )( )
1

g dn d
e
 

  


...     (88)

The first thing to note is that if we drop +1 in the above equations we have the
classical Maxwell Botzmann answer. Clearly this happens if 1.me    To check
when this occurs we assume that this is indeed so and calculate the total number of
particles from Eqs. (86) and (87) by using the ( )g d  written down in Eq. (39).
We ignore the spin degeneracy factor of 2s + 1 which can be put back whenever
one so desires, Integrating,

3/2

2
2 mkTN Ve

h
      ...     (89)

yielding

3/2

2
2V mkTe

N h
        ...      (90)

Clearly the classical limit holds if / 1N V   at moderate temperatures and
2 / 2kT h m  at moderate densities. Hence we have established that the qantum

effects are vital at low temperatures and high densities as discussed between Eqs.
(69) and (70). For the case of no number conservation there is no classical limit.
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Looking back at Eq. (69), we now see that the   of Eq. (88) is the single photon
energy of   and ( )g d   in the number of modes of vibration between  and

d  . Consequently the distribution of energy associated with Eq. (88) can be
written as

2
2 3 /

0

2
1kT

VE d
c e 


 






 

 ...     (91)

which is exactly Planck’s law of radiation. This result was obtained by Bose27 (1924)
by a different procedure. It should be noted that integrating Eq. (91) yields 4E T ,
which is Stefan’s law of radiation.

If we were considering the sound waves in a solid (the result of any disturbance
affecting the interior of the solid), then the modes of vibration is very similar to Eq.
(55) if we take note of the fact that there are two transverse vibrations (velocity )Tc
and one longitudinal vibration (velocity Lc ) and  hence Eq. (55) with all the modes

accounted for would have a right hand side given by 2
2 3 3

2 1 .
2 T L

V d
c c

 


 
 

 
 Just

as light vibrations are quantized in the form of photons (no number conservation),
the sound vibration can be quantized in the form of phonons (no number conservation )
and Eq. (91) would hold with the appropriate changes in ( )g  . The frequency
integral for vibrations in a solid would have an upper cut off but at very low
temperatures that cut off could be considered infinitely large. Consequently the total
energy associated with the vibrations in a solid at very low temperatures (extreme
quantum limit) will be proportional to 4T  and the specific heat proportional to 3T
(Debye28. This bebaviour of the specific heat is completely consistent with
experimental results and a big improvement on Einstein (1906). It should, however,
be clearly understood that a proper understanding of the ‘photon’ and the ‘phonon”
comes only from quantum field theory and many body quantum mechanies
respectively.

We now end this essay with a discussion of two cases where the quantum gases
with number conservation ( 0)   are strongly quantum mechanical and the 1  in
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the denominators of Eqs. (86) and (87) play a dominant role. We treat fermions and
bosons separately.

Bosons : We fix the volume V and the number of particles N and start from high
temperatures where the chemical potential term is dominant. As we lower the
temperature the chemical potential starts increasing from the large negative values
that it has at very temperatures. But the maximum possible value of   is zero since
for 0,   the distribution of Eq. (87) is not defined for energies lower than .  The

temperature at which 0   is denoted by cT  and is defined by the relation

/
0

( )
1ckT

g dN
e

 


 ...      (92)

For temperatures ,cT T the chemical potential remains at zero but the number

of particles as obtained by an integral of the form in Eq. (92) with T replacing ,cT

will be less than N since / / ckT g kTe e   for all energies. If the integral at cT T
yields ,N N  then what happens to the N – N'  particles. They all settle in the

ground state 0  . Thus for temperatures cT T , the ground state has a
macrossopic occupation i.e. the occupation is proportional to V however large V
may be. This number increases as the tee temperature decreases and as T becomes
almost zero, all the gas molecules settle in the ground state. This phenomenon is
known as the Bose-Einstein condensation (BEC) [Einstein 1925]. It should be
realized that this was a very unusual prediction. A real phase transition is supposed
to occur in a system which consisted entirely of non-interacting particles. But here is
a situation where there is a single phase of a normal quantum  gas above cT  and
below it two co-existing phases, one of which has a macroscopic number of particles
condensed in the ground state. This was such an unusual happening that it prompted
a wide search for a system of this kind. The phenomenon of superfluidity was one of
the early candidates ( a combination of superfluid and normal fluid below the transition
point) but it beecame clear that superfluidity does require interactions. The quest for
observing the BEC ended in its experimental realization29, 30  in 1995 fifty years after
the prediction.
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Fermions :  We consider ultra-low temperatures at which the ratio ( ) / kT 
is extremely big if    and very close to zero if   . This makes the number

( )n  n egligibly small for    and ( ) ( )n g   if    . The   cocerned is the
chemical potential corresponding to T = 0. This particular  is called the Fermi
energy and denoted by .F  If the fermion that one is talking about is an electron or

a nucleon then the spin is 1
2  and hence the spin degeneracy is 2. In that case the

volume element in phase space is 
3 3

32 d rd p
h

 and is our factor ( ) .g d   The

integration in momentum extends to the Fermi momentum Fp defined as

2 .F Fp m  The total number of particles is

3/2
2

3 2
0

22 84
3

Fp
FmV VN p dp

h h


      

 leading to
2/32 3

2 8F
h N
m V




       ...      (93)

High densities make the Fermi energy very high. The energy of the Fermi gas is
obtained from the integral

22
2 3

3 3
0

2 8 34
2 5 2 5

Fp
F

F F
pV p VE p dp p N

m mh h


    ...     (94)

Using the ideal gas relationship 2 / 3,PV E  the pressure exerted by a Fermi
gas is seen to be

2/3 5/322 3
5 8 5F
N h NP
V m V



            ...      (95)
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For high values of number density, this can be a very high pressure. It must be
noted that this pressure is not coming from the random motion of the molecules that
happens at finite temperatures. This is an essentially zero temperature pressure and
stems from the fact that two fermions cannot occupy the same state and hence there
is an inherent repulsion in an ideal Fermi gas leading to this enormous pressure.

An application of this pressure can be found in stars called white dwarfs. These
are stars which have run out of the fuel required to maintain the fusion reactions and
hence tend to cool off. The cooling reduces the pressure and gravitational forces
tend to shrink the volume of such stars which are called white dwarfs. An important
issue is whether such stars will hold their own as dim stars or shrink sufficiently to
become a white dwart. When the star has shrunk sufficiently the density will become
high and it is possible that the resulting Fermi pressure effects.

First we need to know which particles in the star provide the largest pressure.
The helium atoms ( primary constituents) in the star are dissociated and the nucleons
which are heavy are virtually static and provide the mass while the electrons which
are light and moving around fast provide the pressure. The mass of the star can be
written as 2 nM Nm  where N is the number of protons (equal to the number of
electrons) and the factor of two arises as in helium the number of neutrons equal the
number of protons (masses are nearly the same). From now on we will disregard all
numerical factors, if the radius of the star is R, then according to Eq. (95), the Fermi

pressure of the electrons (mass ‘m’) is P   
5/32

5.
n

h M R
m m

 
  

 The gravidational

force causing the collapse of the star is 2 2/ .GM R  The force arising from the Fermi

pressure is obtained from 2PR  and for a balance at radius R we need the gravitational
force and Fermi force to balance. This gives

5/32 2

2 3
1

n

M h MG
m mR R
 

   
...      (96)
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The critical mass cM for balance at radius ‘R’ is consequently obtained as

1/3 2

2
1c

n n

M h
m RGm

 
  

...      (97)

The above result says that the radius ‘R’ and the corresponding critical mass of

the white dwarf are related as 3
cM R  i.e. larger the mass, smaller the rdius. But

there is a catch!

The thermodynamic relation of Eqs. (94) and (95), assume that the electrons are
non-relativistic. However, if we calculate the Fermi energy for a typical white dwarf
parameters from Eq. (93) and use it to find the equivalent Fermi temperature FT

through the relation ,F FkT  then typical Fermi te4mperatures are 1110 .K  The

temperature of a white dwarf is typically 710 K and hence the energies of individual
electrons are in general much higher than the rest mass energy which makes the
electrons strongly relativistic. The relativistic dispersion relation is

2 2 2 4p c m c    which becomes   pc when the rest mass contribution to
energy is smaller than the motional contribution. The total energy is now found as

4/3
3 3

3 3
0

34
8

Fp
Vc cV NE p dp h

Vh h





      ...      (98)

it can easily be checked that the ultra-relativistic ideal gas has a pressure volume
relationship given by / 3.PV E  The pressure, consequently, works out to be

4/33

3
3

8
c NhP

Vh

 
   

...      (99)

Once again dropping all numerical factors the pressure is estimated as

P  
4/3

4
n

M hc
m R

 
  

which leads to a repulsive force proportional to 
4/3

2 .
n

M hc
m R

 
  
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Balancing this force against the gravitational collapse inducing force 2 2/ ,GM R  the

critical mass cM  for balance is found as

2/3

2
c

n n

M hc
m Gm

 
  

...     (100)

The critical mass is independent of radius of the star !! The interpretation is that
no matter what the radius, if the mass of the star is greater than cM , then the
gravitational forces will always win and the star will collapse to become a black
hole. For a white dwarf star to be founed we must have cM M . This critical mass
was found by Chandrasekhar31 and a called the Chandrasekhar limit – another
great result found by an Indian scientist.
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