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Brownian Motion – An Introduction With  

A Historical Perspective  

Saugata Bhattacharyya 

Vidyasagar College 

39, Sankar Ghosh Lane, Kolkata-700006, India  

 

 [Abstract: Brownian motion, after more than two hundred years of its 

genesis, still remains relevant as everyday we identify more areas in science where 

diffusion is the basic mechanism. Apart from that, the theoretical framework of 

Brownian motion lays the foundation of non equilibrium statistical mechanics. 

With the advent of its quantum version, other vistas have also opened up, specially 

where one treats a Brownian motion in a bath of parametric oscillators - a model 

for interacting theories where we can see the connections between noise, 

fluctuations, decoherence and dissipation etc. In our modest article we review the 

classical approaches to the Brownian motion and try show the unity in the diversity 

of different schemes]. 

 

 Keywords: diffusion, dissipation, noise, fluctuation 

 

 

1. Introduction 

 In 1827, Robert Brown, the Scottish botanist, observed rapid, 

inherent, incessant and zigzag (extremely irregular) motion of pollen 

grains of Clarkia pulchella in aqueous suspension. Such motions were 
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known to exist among organic molecules and the cause was attributed to 

the mysterious 'vital force'- a characteristic of all living matter. Brown, 

used dead pollens and finely ground inorganic dust to show that the 

motion still persisted and proved through a series of experiments that the 

motion was not due to 

� Vital force, a mysterious force attributed to all living matter at that 

time, 

�  Currents 

�  Convection rolls 

�  Evaporation 

 Though he was unable to pinpoint the exact cause of the motion, 

Brown gave birth to a problem whose successful resolution would 

require almost a century. 

 It is interesting to note that none of the proponents of the kinetic 

theory published anything about the Brownian motion. It was forgotten 

by the then scientific community for some time. It was almost after a 

span of thirty years the problem was picked up again by Jules Regnault 

in 1858 who described the motion as a result of the absorption of 

incident light ending up in local heating of the solvent and creating a 

microscopic convection current. Interestingly, Christian Wiener, in 1863 

argued that the motion is due to the internal molecular motion in the fluid 

but unfortunately he assumed that there were two kinds of molecules 

involved in the process, the material molecules and the aether molecules. 

Subsequent experiments showed that the motion was independent of 

� the chemical composition or the shape of the container  

�  External effects (e.g. incident light, wind etc.) 
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 It was during 1874-1880 that the right kind of ideas started emerging. 

Three Belgian Jesuits, J.Delsaux, J. Thirion and X. Carbonelle attributed 

the motion to molecular fluctuations. They argued that the distribution of 

molecular velocities will give rise to fluctuations in density and hence in 

pressure in the microscopic scale which average out in the macroscopic 

scale. The idea of fluctuations was once again introduced by Leon Guoy 

in 1888 and found a supporter in none other than Henri Poincare. 

Scientists studied the effects of solvent viscosity and ambient 

temperature to find that for finer particles and less viscous and hotter 

solvents the motion was very pronounced. 

 Another very interesting, important and far-reaching implication 

came from the velocity measurements of the Brownian particles. The 

velocity did not seem to have a proper limit for small time intervals. The 

clue to the problem was in the fact that the Brownian trajectory was 

continuous but non smooth at every length scale. Smoluchowski actually 

understood that and held that the force acting on the Brownian particles 

was also non smooth. Assuming this, he arrived at results that could 

explain the behaviour of diffusing particles e.g sugar cubes diffusing in 

tea, perfume permeating from one corner of the room to another or the 

diffusion of a drop of ink in water. The crux of the problem lays in the 

understanding that the time scale of observation is much larger compared 

to the time scale at which the actual collisions are taking place. So that 

the observed displacement is in reality an average over a multitude of 

zigzag displacements. Thus, making the curve non-differentiable and 

rendering the concept of velocity or average velocity meaningless. This 

observation and understanding led to the modeling of Brownian motion 
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by a random process and eventually gave birth to the theory of 

probability calculus and the theory of stochastic process. 

 Mathematicians knew about curves statistically self-similar at every 

scale, called fractals which are full of kinks and are differentiable 

nowhere. And Weierstrass had discovered such pathological functions 

like  

�(�) 	= � �	 cos(	��)�
	�� 	

where a is odd, �	 ∈ 	 (0, 1), and ab > 1 + 3�/2 is nowhere 

differentiable. With Norbert Wiener showing in 1923 the mathematical 

existence of Brownian motion, existence of a random (stochastic) 

process with the given properties was truly established. 

 Together Einstein and Smoluchowski showed that viscosity and other 

forms of dissipation, are on a molecular level, caused by thermal motion 

of particles i.e. they found a relation between viscous or any kind of 

dissipative force and the random or fluctuating part of the force - the so 

called fluctuation-dissipation formula. Later Smoluchowski established 

that for a large but finite system in thermal equilibrium variables must 

vary in time in a manner akin to the Gaussian White Noise - the cause of 

Brownian motion; that is, he proved that Brownian motion is 

ubiquitous in all macroscopic physical systems in equilibrium!! 

 In fact, with the French physicist J. Perrin receiving the Nobel Prize 

in 1926, marking the beginning of the centenary of Brownian motion, for 

showing that the colliding particles obey gas laws and calculating the 

Avogadro's number, the phenomenon had come a full cycle and had a 

solid footing. Barring Kepler's laws, Newton's laws of dynamics and the 
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laws of thermodynamics one rarely finds a phenomenon that is as 

relevant even today as Brownian motion, in spite of being almost two 

hundred years old. 

 

2 The Mathematical Structure 

Different theoretical approaches were developed by Einstein-

Smoluchowski, Langevin, Lorentz and Fokker-Planck. We shall leave 

aside the Fokker-Planck approach for the sake of brevity. We restrict 

ourselves to the linearized picture for the sake of simplicity and also for 

the reason that motions along different directions are independent of 

each other. We notice that the only observable quantity is the 

displacement of the Brownian particle s(�) 	= 	�(�) − �(0). We show 

that the mean squared displacement is proportional to time i.e. 〈�(�)²〉 	= 	2 �. And it turns out that the distribution of s is Gaussian or 

!(�. �) = 1√4� � exp (− �)4 �*																																																									… (2.0.1)	
where D is the diffusion constant. In the same way rotations about an 

axis can be considered with an analogous result which is left as an 

exercise to the readers. 

2.1 The Einstein Approach: Comparison With Diffusion 

2.1.1 Phenomenology 

 Suppose that 

 � the suspended particles, visible under microscope, are 

irregularly dispersed in a liquid. 

 � Movement of one particle is independent of the motion of others. 
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 �  Movement of one particle during two distinct and non-

overlapping intervals of time are considered independent as long 

as the time interval is not too small. 

 We, therefore, introduce a characteristic time scale , in the problem, 

by hand, which is microscopically large but macroscopically small, such 

that the motions during non-overlapping intervals of length ,	can be 

considered statistically independent. Assuming (well substantiated by 

experiments) suspended particles exert a pressure -	 = 	./01  ... (2.1.1) 

where n is the number density of the particles, T is temperature in degree 

Kelvin and /0 is the Boltzmann's constant, we can write 

phenomenologically 

 23 = − ∇553. ... (2.1.2) 

where  23 is the current density. Along � direction, the equation looks like 

6	 = 	− 7	78 ... (2.1.3) 

 If, now an external force 9: and a velocity dependent resistive force −ζv act on the particle, then in the stationary case the two forces balance 

each other giving rise to a terminal velocity 

< = 9:
ζ
																																																																																																															 . . . (2.1.4) 

	leading to   

6	 = 	.<	 = 	. =>
ζ
 ... (2.1.5)	

In a stationary state, where the pressure gradient causes current flow, the 

force density turns out to be 

.9: 	 = − ?-?� = −/01 ?.?� 																																																																				 . . . (2.1.6) 
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leading to 

6	 = 	− /01
ζ

?.?� 																																																																																					 . . . (2.1.7) 
with the identification 

 	 = /01
ζ
																																																																																																								 . . . (2.1.8) 

2.1.2 The Model 

 If in a time interval τ the x coordinate of a particle changes by s and 

the number density of particles being in the interval s to s + ds is D.	 = 	.E(�)D�	 ... (2.1.9) 

where ϕ(s) is the probability that the � coordinate of the particle suffers 

a change s with the properties 

G E(�)D� = 1			(normalization)																																																	… (2.1.10)�
P�

 

E(�) = E(−�)			(isotropy)																																																														… (2.1.11) 
Therefore, we can write, 

.(�, �	 + ,) = G .(� − �, �)E(�)D��
P�

																																													… (2.1.12) 
 It is extremely interesting to note that the above equation is, in 

essence, the Chapman-Kolmogorov equation! This is a very general 

equation that was formally established by Chapman and Kolmogorov 

much later and is considered a cornerstone of statistical processes. 

Einstein used it in his work even before its proponents established it!! 

Now assuming n(x,t) : to be a smooth function of its arguments 

(otherwise density could not be defied) and Taylor expanding both sides, 

we obtain 
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 .(�, �) + , ?.?� + ⋯
= .(�, �) G E(�)D� − ?.?� G �E(�)D��

P�
�

P�
+ 12	 ?².?�²	 G �)E(�)D� + ⋯�

P�
																																			… (2.1.13) 

 The first terms on both sides cancel out, the second term on the right 

vanishes due to eqn. (2.1.11), ultimately, giving rise to upto the quadratic 

level,  ?.?� = 〈�)〉2, ?).?�) 																																																																																				… (2.1.14) 
Making use of the continuity equation, ?.?� + ∇553. ȷ3 = 0															or		in	one	dimension 

?.?� + ?6?� = 0																leading	to	the	equation 

?.?� =  ?).?�) 																																																																																									… (2.1.15) 
 This is the famous partial differential equation, first order in time and 

second order in space, called the Diffusion equation. It is interesting to 

note the SchrZ[dinger equation in non-relativistic quantum mechanics, 

that governs the time evolution of the quantum state, is also a diffusion 

equation, albeit in imaginary time. While in Brownian motion we deal 

with thermal fluctuations in quantum mechanics we encounter quantum 

fluctuations. Comparison between equation (2.1.14) and (2.1.15) yields 

 = 〈�)〉2, 																																																																																																… (2.1.16) and 
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〈�)〉 = 2/01\ ,																																																																																						 … (2.1.17) 
 We understand that eqns.(2.1.12) and (2.1.15) represent the same 

physics, one in integral form and the other in the differential form. It 

must be kept in mind though, that in obtaining eqn.(2.1.15) we had to 

truncate eqn.(2.1.12) after Taylor expansion. 

2.1.3 Calculation of The Distribution Function 

 Next, we take up the initial value problem of how n(x, t) spreads in 

space and time as promised. We take the initial condition that at t = 0 all 

particles were placed at the origin rendering n(x, t) to be infinite and zero 

otherwise. If we denote by N the total number of particles then  

at  t = 0       .(�, 0) 	= 	]	^(�)  ... (2.1.18) 

using the Fourier representation we can write 

.(�, �) = 12� G ._(/, �)`ab8D/�
P�

																																																								… (2.1.19) 
Using eqn.(2.1.19) in eqn.(2.1.15) we obtain ?._(/, �)?� = −/²	 ._(/, �)																																																																		… (2.1.20) 
yielding a solution 

._(/, �) = ._(/, Z)`Pdb²e ... (2.1.21) 

Identifying ._ (k, 0) = N we write 

._(/, �) = ]`Pdb²e  ... (2.1.22) 

and then using eqn.(2.1.22) in eqn.(2.1.19) we obtain 

.(�, �) 	= 12� G ]`Pdb²e`ab8D/ = ]2� `P8²/)de
�

P�
G `PdefbP ghijkliD/�
P�
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= ]2� `P himjkn � � = ]√4� � `P8²/ode 																																																… (2.1.23)	
 We are now in a position to calculate the mean squared displacement 

with the above distribution formula 

〈�²〉 = 1]G .(�, �)�²D� = 1√4� 1G �²`P8²/odeD��
P�

�
P�  

= 4 �√� G �²�
P�

`P8²D� = 4 �√� G ��/)�
P�

	`P8D� 

= 4 �√� p q32r = 2 1																																																																											 … (2.1.24) 
 Defining the mean displacement as s8 ≡ u〈�²〉 = √2 �	we see that it 

is proportional to the square root of time which is the hallmark of 

diffusion. 

2.1.4 Some Idea About The Length And Time Scales Involved In The 

Process 

 For spherical particles having mass m, radius r, suspended in a fluid 

of viscosity ´ and moving under an external force 9: the resistive force is 

known to be 6�vw<x	(Stokes' Law) where <x is the terminal velocity of 

the particle. This yields <x =	= =:yz{| and \ = 6�vw.	 Starting with 

 = /01\ = }1~� 16�vw ≡ }1~� �																																																									 … (2.1.25) 
where ~� is the Avogadro's number and B is the mobility and R is the 

universal gas constant we see that this relation can be used to determine 

either D or ~� and also that D depends only on v when temperature and 

radius of the suspended particles are known. Recalling the definition of 
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s8, the mean displacement, we see that rewriting things properly we can 

express 

s8 = �}1~� 13�vw																																																																																			… (2.1.26) 
or 

~� = 1s8) }13�vw																																																																																							… (2.1.27) 
 Thus, if ~� is known one can determine s8	and vice-versa.  

Using the known values of ~� = 6.023 × 10)�, v = 1.35 ×10P)��. ��P�. �`�P�	for water at 17°�, radius r = 10Pocm and R = 

8.31× 10�	`w�.�Zs`P�. D`�. �P� one finds s8 = 8 × 10P�cm 

2.1.5 Justifying The Existence of Random Force From Theoretical 

Considerations 

 From the kinetic theory results one can write for the suspended 

particles having a mass 'm' 12�〈<²〉 = 32 /01																																																																																 … (2.1.28) 
independent of their size and environment. For particles having 

m = 2.5 ×	10P�� gm in colloidal platinum solution one calculates for  

T = 292K 

u〈<²〉 = �3}1�~� = 8.6	cm/ sec 																																																								… (2.1.29) 
which gives us a rough idea about the order of magnitude of the velocity 

for thermal motion. In a solution of solvent viscosity ɳ these particles 
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will experience a resistive force according to the Stokes' Law and we 

have 

� = D<D� = −6�vw<																																																																												 … (2.1.30)	
with a solution 

<	 = 	<�	 exp q−6�vw� �r																																																																			… (2.1.31)	
 If we denote by ��.�	 the time for < to become 0.1<� then 

��.� 	= � ln 106�vw 																																																																																					… (2.1.32)	
 For platinum particles in water we obtain ��.� 	= 	3.3 ×	10P�	sec 

which implies that under the action of viscous forces only, the particles 

would almost completely lose their initial velocities within a time span of ��.�. Therefore, the particles must get impulses from the water molecules 

at random during that time interval to sustain their average velocity. So, 

only by assuming the existence of a random force can one reconcile 

kinetic theory results with hydrodynamic predictions. 

2.2 The Langevin Approach 

 We pick up the thread from where we left in the last section by 

writing down the equation of motion of the suspended particle in the 

form 

�D<D� = −\< + �(�)																																																																													… (2.2.1) 
where F(t) is a random force or additive noise. Rewriting the equation in 

terms of position we obtain ��[ = −�p�� + �(�) �[ = −p�� + 9(�)			or <� = −p< + 9(�) ... (2.2.2) 
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where p = \/� and 9(�) 	= 	�(�)/�. We assume 

� 〈�(�)〉 	≠ 0	and	�(�) is independent of x and v. 

� �(�) varies extremely rapidly compared to variations of v. 

� 〈�(�)²〉 ≠ 0	and 〈�(�)�(��)〉 = 2 ^(� − ��)where D is some constant. 

 It is interesting to note that the average or the correlation function 〈�(�)�(��)〉 is not only peaked about �	 = 	�′ but also a function of the 

time interval |� − ��| only i.e. stationary in time, meaning that while 

performing a Brownian motion experiment any instant of time can be 

chosen to be the origin of time. 

 Taking an average of the last step of eqn.(2.2.2) we obtain DD� 〈<〉 = −p〈<〉							leading	to	a	solution 

〈<(�)〉 = 〈<(0)〉`P�e																																																																													. . . (2.2.3) 
while using �� = 	< we rewrite the equation as �[ = −p�� + 9(�)  ... (2.2.4) 

 Multiplying the above equation by �, rearranging terms and taking an 

average we obtain DD� 〈��� 〉 − 〈�� )〉 = −p2 DD� 〈�)〉 + 〈�9(�)〉 																																										… (2.2.5) 
and then using the equipartition theorem in one dimension 12�〈��²〉 = 12 /01																																																																																			 … (2.2.6)	
alongwith 〈�	9(�)〉 	= 	0  ... (2.2.7) 

yield  

( D)D�) + p DD�* 〈�²〉 = 2 /01� .																																																															… (2.2.8) 



80                      SAUGATA BHATTACHARYYA  

 

 Equation (2.2.7) needs a bit of justification. The timescale at which 

the random force changes is extremely fast compared to the timescale 

over which an observable displacement is produced. So if we average out 

the fast degrees of freedom (an idea which is essentially used in the 

Dynamic Renormalization Group Calculations) in that process x can be 

thought of as essentially constant and the average is performed over only 9(�) yielding zero. It is in this light that the eqn.(2.2.7) has to be 

understood. 

Solving the differential eqn.(2.2.8) we obtain, 

〈�²(�)〉 = q2/01�p r � − 2/01�p) (1 − `P�e).																																									… (2.2.9) 
 We immediately notice that for large time scales (the diffusive 

regime) 

〈�²(�)〉 ≈ q2/01�p r �																																																																												 … (2.2.10)	
ignoring the constant term while for small enough times (the ballistic 

regime) 

〈�²(�)〉 ≈ q/01� r �².																																																																											 … (2.2.11)	
 The timescale for which the behaviour of the system crosses over 

from the ballistic to the diffusive regime is extremely interesting. It is 

also important to note that while in the diffusive regime the dissipative 

force (represented by p) plays an important part in the ballistic regime 

the dynamics is governed entirely by the inertial motion. Comparing with 

eqn.(2.1.25) one immediately identifies  	 = 	 b���� 	 as predicted by the 

Einstein's theory. 
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2.2.1 The Relation Between Random and Fluctuating Force: The 

Fluctuation-Dissipation Theorem 

 In this section we would like to establish a relation between the 

dissipative force and the randomly fluctuating force. To that end we start 

by multiplying the last step of equation (2.2.2) by < to obtain <<� = −p<² + <9(�) 
or	DD� <² = −2p<² + 2<(�)9(�).																																																											… (2.2.12) 
Now taking an ensemble average of eqn.(2.2.12) we obtain DD� 〈<²〉 = −2p〈<²〉 + 2〈<(�)9(�)〉																																																		… (2.2.13)	
 The last term in the above equation is entirely nontrivial. To deal 

with this term we start with the identity  

G <�(��)D�� = <(�)) − <(��)ei
e� 																																																										… (2.2.14) 

Setting �) = t and �� = � − ∆� we get 

<(�) = 	<(� − ∆�	) + G <�(��)D��e
eP∆e 																																															… (2.2.15) 

Substituting for <�  from equation (2.2.2) we get 

<(�) 	= 	<(� − ∆�) 	+ G �−p<(��) + 9(��)�D�� 																					… (2.2.16)e
eP∆e 	

This implies 

〈<(�)9(�)〉 = 〈<(� − ∆�)9(�)〉 + G 〈�−p<(��) + 9(��)�9(�)〉	D��e
eP∆e  

= −pG 〈<(��)9(�)〉	D�� +G 〈9(��)9(�)〉	D�′e
eP∆e

e
eP∆e 																				… (2.2.17) 

It is important to understand that 
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 〈<(� − ∆�)	9(�)〉 = 0	
and also  

G 〈<(��)9(�)〉	D��e
eP∆e = 	0 

because the random force at a time instant t can in no way be depend on 

the velocity at a previous instant. Therefore, we have from eqn.(2.2.17) 

〈<(�)	9(�)〉 = G 〈9(��)	9(�)〉	D�′e
eP∆e 																																															… (2.2.18)	

 We now use the stationary property of the correlation function which 

implies 〈9(�� + �)	9(� + �)〉 = 〈9(��)9(�)〉	
to obtain 

〈<(��)	9(�)〉 = G 〈<(��)	9(�)〉D�� = 12G 〈9(��)9(�)〉	D�′e�∆e
eP∆e

e
eP∆e 	 

(and using �� ≡ � + �) 
= 12G 〈9(�)9(� + �)〉D� = 12G 〈9(0)9(�)〉D�∆e

P∆e
e�∆e
eP∆e  

= 12G 〈9(0)9(�)〉D��
P� 																																																																									… (2.2.19) 

where we have made use of the stationary property of the correlation in 

the 3rd step of the above equation. As � denotes a very small time scale 

and ∆� is actually very large compared to it we have used ∞ in the limits 

of the integration in the last step of eqn.(2.2.19).  Therefore, we return to 

eqn. (2.2.13) DD� 〈<)〉 = −2p〈<)〉 + 2〈<(�)	9(�)〉 
= −2p〈<²〉 + G 〈9(0)	9(�)〉D��

P� 																																																				… (2.2.20) 
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In thermal equilibrium, 

〈<²〉 = /01�  

and hence DD� 〈<²〉 = 0 

leading to 

p = �2/01G 〈9(0)	9(�)〉D��
P�  

= 12�/01G 〈�(0)	�(�)〉	D��
P� 																																																								… (2.2.21) 

The above equation is extremely important as it shows a critical balance 

in the system in equilibrium. On one hand energy is fed into the system 

through fluctuations and on the other it gets dissipated through the 

dissipative mechanisms operative in the system. Only in equilibrium they 

strike a balance. This is the famous Fluctuation-Dissipation Relation. 

On the left hand side of eqn.(2.2.21) we have p = ��, the scaled  

co-efficient of the velocity dependent dissipative force and on the other 

we have a two point correlation function of the fluctuating force. The 

special case where the fluctuating forces are ^ −ccorrelated we have a 

very simplified picture where 

p = 12�/01G 2 ^(�)D��
P� =  �/01																																													… (2.2.22) 

 Here we have made use of the 3rd property of the fluctuating force �(�) as stated in the beginning of the section (2.2). Recalling that \ = 6�vw for the Stokes' Law we readily see the connection  = 6�vw /0T  ...(2.2.23) 

which is a simplified form of Fluctuation-Dissipation Relation in a 

special situation. 
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2.3. The Lorentz Approach 

 This is an innovative iterative procedure devised by H.A. Lorentz to 

depict the same results obtained by Einstein's theory but starting with the 

Langevin equation in velocity space i.e. the last step of eqn.(2.2.2). 

Assuming the initial condition that at �	 = 	0 the velocity is <� and that at � is <e we write <� = −p< + 9(�) 
and integrating w.r.t time from 0 to � obtain <e − <� = −p	<�� + ℎ(�) + �(�)) ... (2.3.1) 

where we have integrated over a sufficiently small time interval so that 

the terms quadratic in time can be neglected and 

ℎ(�) = G 9(��)D��e
� 																																																																																… (2.3.2) 

Rearranging and rewriting eqn.(2.3.1) we get <e = <�(1 − p�) + ℎ(�) ... (2.3.3) 

Squaring eqn.(2.3.3) and keeping terms linear in time yields <e) = <�)(1 − 2p	�) + 2<�(1 − p	�)	ℎ(�) + ℎ(�)) + �(�))								… (2.3.4) 
Taking the ensemble average of eqn.(2.3.4) with the knowledge that 〈<�)〉 = 〈<e)〉 ... (2.3.5) 

because of thermal equilibrium and 〈<�ℎ(�)〉 = 0 ... (2.3.6)	
we obtain 

〈ℎ(�)²〉 = f)�b��� l �.                                                                     ... (2.3.7) 

Now consider a total time interval , = .�	 split into . equal intervals of 

duration � such that in the second step the variables are <� and ℎ�, in the 

third they are <) and ℎ), in the fourth <� and ℎ� and so on. Defining 
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  = (1 − p	�)	
we rewrite eqn.(2.3.3) and use it to write a system of equations as <� =  <� + ℎ�(�) <) =  <� + ℎ)(�) =  )<� +  ℎ�(�) + ℎ)(�) <� =  <) + ℎ�(�) =  ³<� +  )ℎ�(�) +  ℎ)(�) + ℎ�(�) 
. 

. <	 =  <	P� + ℎ	(�) =  	<� +  	P�ℎ� +  	P)ℎ) +⋯+ ℎ	(�)... (2.3.8) 

Denoting <� = ℎ� for the sake of notational convenience we can in 

general write 

<	 = � 	Pbℎb	
b�� 																																																																																			… (2.3.9) 

The displacement ∆� produced in time , therefore, can be expressed as ∆� = �(<� + <� + <) +⋯+ <	P�) 
 = ��<� + ¢ <� + ℎ�(�)£ + ¢ )<� +  ℎ�(�) + ℎ)(�)£ + ( �<� + )ℎ�(�) +  ℎ)(�) + ℎ�(�) + ⋯…� 
 = ��<�(1 +   +  ) +⋯+  	P�) + ℎ�(1 +   +  ) +⋯+  	P)) +ℎ)(1 +   +  ) +⋯+  	P�) + ⋯+ ℎ	P�� 
 = � ¤ℎ� �P¥¦�P¥ + ℎ� �P¥¦§��P¥ + ℎ) �P¥¦§i�P¥ +⋯+ ℎ	P�¨ 
 = e�P¥ �ℎ�	(1 −  	) + ℎ�	(1 −  	P�) + ℎ)	(1 −  	P)) + ⋯+ℎ	P�	(1 −  )� 

= ��ℎ© (1 −  	P©)(1 −  )
	P�
©�� 																																																																		… (2.3.10) 

We now try to calculate 〈(∆�)²〉 and accordingly write 
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〈(∆�))〉 = �)(1 −  )) 〈(ℎ�	(1 −  	)
+�ℎ©	(1 −  	P©)(ℎ�	(1 −  	) +�ℎª	(1 −  	Pª)	P�

ª��
	P�
©�� )〉	 

= �)(1 −  )) « � (1 −  	P©)	P�
©,ª�� (1 −  	Pª)〈ℎ©ℎª〉
+ 2� 	(1 −  	P©)〈ℎ©ℎ�〉	P�

©��
+ (1 −  	))〈ℎ�)〉¬																																				… (2.3.11) 

We now make use of the relations 〈ℎ©ℎ�〉 = 0		for		< ≠ 0 ... (2.3.12) 〈ℎªℎ©〉 = ^ª©〈ℎ²〉			for		®, < ≠ 0 ... (2.3.13) 

〈ℎ²〉 = f)�b��� l �	 ... (2.3.14) 

〈<�)〉 = 〈ℎ�)〉 = b���  ... (2.3.15) 

Plugging in the above relations in eqn.(2.3.11) we get 

〈(∆�)²〉 = �)(1 −  )) ¯�(1 −  	P©))〈ℎ²〉 + (1 −  	)²〈ℎ�)〉	P�
©�� ¬ 

= �)(1 −  )) ¯�(1 −  ©))〈ℎ²〉 + (1 −  	)²〈<�)〉	P�
©�� ¬ 

〈(∆�)²〉 = �² (1 −  	))(1 −  )² 〈<�)〉 + �)〈ℎ)〉(1 −  )²�(1 −  ©))	P�
©��  
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= 1p) °〈<�)〉(1 −  	)) + 〈ℎ)〉�(1 −  © +  )©)	P�
©�� ± 

= 1p) ²〈<�)〉(1 −  	)) + 〈ℎ)〉(. − 1 − 2  1 −  	P�1 −  
+  ² 1 −  	P)1 −  ² ³																																																																	… (2.3.16) 

Now in the limit of very large . only the term proportional to . matters 

and hence in that limit using eqn.(2.3.14) we get 

〈(∆�))〉 ≃ .p) 〈ℎ)〉 = .p) q2p/01� r � 
= q2p/01�p r (.�) 
= q2p/01\ r ,																																																																																							 … (2.3.17)	
the same result, obtained from both the Einstein and Langevin picture. It 

would be interesting if one could recover the result for the ballistic 

regime from this picture in the limit of very small .. One could even try 

to derive the Fluctuation-Dissipation relation from this picture. 

2.4. Random Walk And The Brownian Motion 

 Consider an infinite one dimensional lattice with lattice spacing a  

with a drunkard situated at one of the lattice points trying to walk to his 

home. He is so drunk that he does not know his way and takes a step to 

the right or left with equal probability of 
�). His movement has two 

features though: 

• he always takes a step of size unity 

• the duration of a single step is ∆� 
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 We are interested to find the mean and variance of the displacement 

of the walker as a function of time. This is the standard random walk 

problem. If the drunkard takes steps in two different directions with two 

different probabilities then that would be the biased random walk 

problem. We are going to present a discrete time formalism of the 

problem and indicate how the passage to continuum time description 

may be effected. 

2.4.1 Formulation of The Problem 

 Suppose after j-steps the walker lands up at the .th site. We define µ(., 6) as the probability for the walker to be at the .th site after the 

elapse of 6th time step. Then, we understand that at the previous instant 

of time, i.e. at the (6 − 1)th instant, the walker was either at the (. −1)th or the (.	 + 	1)th site. therefore one writes 

µ(., 6) = 12 �µ(. + 1, 6 − 1) + µ(. − 1, 6 − 1)�	 or 
µ(., 6 + 1) = 12 �µ(. + 1, 6) + µ(. − 1, 6)�																																			… (2.4.1) 
where we have obtained the second step by replacing 6 by 6	 + 1 in the 

first step. The symmetry of the unbiased random walk is reflected in the 

fact that the equations are invariant under the transformation (. − 1)	(.	 + 	1). The passage to the continuum description follows 

automatically by subtracting the first step from the second of eqn.(2.4.1) 

to obtain 

µ(., 6 + 1) − µ(., 6) = 12 �µ(. + 1, 6) + µ(. − 1, 6) − 2µ(., 6)� µ(., 6 + 1) − µ(., 6)(6 + 1)∆� − 6∆� = 12 �µ(. + 1, 6) + µ(. − 1, 6) − 2µ(., 6)�(6 + 1)∆� − 6∆�  
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µ(., 6 + 1) − µ(., 6)∆�
= 12∆�	�µ(. + 1, 6) + µ(. − 1, 6) − 2µ(., 6)�				… (2.4.2) ?µ(., �)?� = ¶�µ(. + 1, �) + µ(. − 1, �) − 2µ(., �)�																		… (2.4.3) 

where to obtain eqn.(2.4.3) from eqn.(2.4.2) we have taken the limit ∆� → 0. The product 6	∆� → �	when along with 6 → ∞ we also impose ∆� → 0. µ(., �) represents the probability that the drunken walker 

occupies the nth site when time � has elapsed. ¶ = (2∆�)P� is the 

transition probability between a site and one of its nearest neighbours. 

One might wonder about what happens to ω in the limit ∆� → 0 but that 

is the price that we pay for using 'continuous time - discrete space' 

description of the problem. The problem does not occur when both space 

and time are either continuous or discrete. One look at the r.h.s of the 

third step of eqn.(2.4.2) would tell anybody that the expression is nothing 

but the second partial derivative of µ(., �) w.r.t space should we care to 

divide and multiply the expression by the lattice spacing and then take 

the limit of lattice spacing		→ 	0.  The eqn. (2.4.3) is then, in disguise, the 

diffusion equation that we know so well by now. Mathematically 

speaking, the displacement of the drunken walker is a Markov process, 

where the probabilities are governed by the Master Equation (2.4.3). 

2.4.2 Solution of The Problem 

 First, we tackle the problem using the idea of distribution. Assume 

the lattice to be lying along the �-direction. The total number of steps 

taken by the walker is	6, out of which 6� steps are taken in the forward 
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direction while 6– are taken in the backward direction. This immediately 

yields 6� + 6P = 6			and		6� − 6P = .		 or	 
6� = 12 (6 + .)			and		6P = 12 (6 − .)																																																	… (2.4.4) 
As the walker takes the forward and backward steps with equal 

probability we write 

µ(., 6) = q12r
º 6!6�! 6P! = q12r

º 6!fº�	) l ! fºP	) l !																																		… (2.4.5) 
i.e. the probability distribution of the particles after j steps follows a 

binomial distribution. Taking the general case of the biased random walk 

as an example we can write µ(., 6) = �-	µ(. − 1, 6 − 1) + ¼	µ(. + 1, 6 − 1)�	and	 - + ¼ = 1 ... (2.4.6) 

where - is the probability of the forward step while ¼ is that of the 

backward step. In the same manner as before one can write down 

µ(., 6) = �º½-º½¼º§ = 6!fº�	) l ! fºP	) l !
º -¾½¦i ½¼¾§¦i 																							… (2.4.7)	

In the limit of large 6 and large -6 the distribution reduces to a Gaussian 

distribution after one makes use of the Stirling's approximation. Writing 6� as � for convenience, we determine the mean and variance as 

〈�〉 = � �8º �-8¼ºP8º
8��  
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= � 6!�! (6 − �)! 	�	
º

8�� -8(1 − -)ºP8 

= � 6!(� − 1)! (6 − �)!	
º

8�� -8(1 − -)ºP8 

= 6	-� (6 − 1)!(� − 1)! (6 − �)!
ºP�
8�� -8P�(1 − -)(ºP�)P(8P�) 

 = 6	- ... (2.4.8) 

In a similar manner, the mean of the square can also be calculated using 

〈�)〉 = � �8�)-8¼ºP8ºº
8��  

= � 6!�! (6 − �)! �²
º

8�� -8(1 − -)ºP8 

= � 6!(� − 1)! (6 − �)! �
º

8�� -8(1 − -)ºP8 

〈�)〉 = � 6!(� − 1)! (6 − �)!
º

8�� (� − 1)-8(1 − -)ºP8
+� 6!(� − 1)! (6 − �)! -8(1 − -)ºP8

º
8��  

= 6(6 − 1)-²	� (6 − 2)(� − 2)! (6 − �)!
ºP)
8�) -8P)(1 − -)ºP8 + 〈�〉 

 = 6(6 − 1)-² + 6-. ... (2.4.9) 

Hence the variance is 〈�)〉 − 〈�〉² = 6(6 − 1)-² + 6	- − 6²-² = 6-(1 − -) ... (2.4.10) 
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With these basic formalities completed we define the Fourier transform 

on the discrete lattice by 

µ¿(/, �) =�µ(�, �)`ab88 																																																																		… (2.4.11) 
with 6 replaced by �, . by � and µ(., 6) by µ(�, �). Applying this to the 

master eqn.(2.4.3) we obtain ??� µ¿(/, �) = ¶À`ab + `Pab − 2Áµ¿(/, �)= −2¶(1 − cos /)	µÂ(/, �)																																					… (2.4.12) 
with a solution µ¿(/, �) = `P)Ãe(�PÄÅÆb)µ¿(/, �) ... (2.4.13) 

The initial condition µ¿(/, 0) = 1 corresponds to µ(�, 0) 	= 	^8,� (ref. 

eqn. (2.1.18)). Now noting that 

〈�)〉 =��)8 µ(�, �) 
= −?²µ¿(/, �)?/² |b��	 

 = 2¶� ... (2.4.14) 

where we have used eqn.(2.4.11) in the second step and eqn.(2.4.13)  

in the third step of the above equation with the initial condition µ¿(/, 0) = 1. Once again, we obtain diffusion from the standard random 

walk. Using the inverse Fourier transform of eqn.(2.4.13) we obtain, 

µ(�, �) 	= �µ¿(/, �)`Pab8 =�`P)Ãe(�PÄÅÆb)`Pab8b8  

= `P)Ãe�`()Ãe ÄÅÆbPab8) = `P)ÃeÇ8(2¶�)b 															… (2.4.15)	
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where Ç8(2¶�) is the modified Bessel function of first kind and order �. 

Using the asymptotic behaviour of this function (� → ∞, � → ∞ with 
8ie  

fixed) we obtain 

µ(�, �) ≃ 1√4�	¶� exp (− �)4¶�*																																																						… (2.4.16) 
Comparing with eqn.(2.1.33) we immediately identify ¶ as   in the 

Einstein's formulation. To take care of the dimension of   and ¶ we 

recall that to begin with we took the lattice spacing to be unity for 

simplifying our calculations. If instead we worked with  as the lattice 

spacing then we would get ¶² in place of w and that would take care of 

the problem of dimensional incongruence. 

2.4.3 Biased Random Walk And The Diffusion Equation with Drift 

Term 

 We consider the case of biased random walk defined by eqn.(2.4.6) 

on a lattice of lattice spacing , time step ∆� and write µ(., 6	 + 	1) 	= 	 �-	µ(. − 1, 6) 	+ 	¼	µ(.	 + 	1, 6)�	µ(., 6) 	= 	 �-	µ(. − 1, 6 − 1)	+ 	¼	µ(.	 + 	1, 6 − 1)� and -	 + 	¼	 = 	1. ... (2.4.17) 

Taking the difference of the first two steps and using the third we obtain µ(., 6 + 1) − 	µ(., 6)= 	-	�µ(. − 1, 6) − µ(., 6)� + 	¼	�(µ(. + 1, 6) − µ(., 6)� 
= 12 �µ(.	 + 	1, 6) + 	µ(. − 	1, 6) − 2	µ(., 6)�

− 2̂ �µ(.	 + 	1, 6) − µ(. − 1, 6)�																											… (2.4.18) 
where we have defined 
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 -	 = 1 + ^2 	
¼	 = 1 − ^2 																																																																																												… (2.4.19)	
It is clear that eqn.(2.4.18) is a difference equation where each side is 

written as finite difference. On the L.H.S the position index remains 

fixed while the temporal index changes by one unit while on the R.H.S 

the temporal index remains fixed the spatial index changes. Writing the 

equation in the following way µ(., 6	 + 	1) − µ(., 6)∆� ∆�
= )2 �µ(. + 1, 6), +µ(. − 1, 6) − 2µ(., 6)�²
− 2̂ �µ(. + 1, 6) + µ(. − 1, 6)�  

µ(., 6 + 1) − µ(., 6)∆�
= )2∆� �µ(. + 1, 6) + µ(. − 1, 6) − 2µ(., 6)�²
− ^2∆� �µ(. + 1, 6) − µ(. − 1, 6)� 																								… (2.4.20)	

We now consider the limit  → 0, ∆�	 → 0,  such that 
Èi∆e →	a constant in 

that limit. In this limit, the L.H.S is the partial derivative of µ w.r.t time 

while the first term on the R.H.S is the second partial derivative of µ 

w.r.t space. The remaining term gives a meaningful first partial 

derivative w.r.t space only if 
ÈÉ∆e → another constant in the above limit 

implying that along with  and ∆�, ^ should also tend to 0 for the 

equation to have a proper continuum limit. Defining 
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limÈ,∆e→�( )2∆�* =  		and 

limÈ,∆e,É→� q ^2∆�r =  � 																																																																												… (2.4.21) 
the continuum limit of eqn.(2.4.20) becomes ??� µ(�, �) =  ?)?�) µ(�, �) −  � ??� µ(�, �)																																		… (2.4.22) 
This is the old diffusion equation with an additional drift term. The drift 

arises due to the left-right asymmetry or the biasing; but it is interesting 

to notice that the coefficient  � is defined in the limit ^ → 0 which 

implies that in that limit - − ¼ ≈ 0	or	p ≈ q ≈ 0.5. This is a special 

form of the Fokker-Planck equation which we discuss in the next section. 

 

3.  Epilogue 

 The rich mathematical framework generated by this phenomenon is 

being extensively used in mathematics, biology, ecology, social sciences, 

stock market fluctuations, nonlinear dynamics, dynamic critical 

phenomena and in many other contemporary topics. The advent of 

quantum Brownian motion has expanded the horizon even further by 

giving rise to topics like quantum noise and its applications in the field of 

quantum optics and by establishing a link between dissipative systems 

and quantum field theory; quantum decoherence needs a special 

mention here as 'A Nobel Prize' in physics was awarded in this topic 

where noise plays a vital role. Thanks to Brownian motion we 

understand the role played by noise in our life - from Johnson's noise in 

the electrical circuits to the design of nanorobots to molecular motors 

(e.g. kinesins or proteins that move on intra molecular membranes)- it is 
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everywhere. We now realize that noise is not always detrimental as it can 

act constructively not only by sustaining the signal but also by 

amplifying it (e.g. stochastic resonance); finally noise is a crucial 

element in all biochemical reactions without which life in its present 

form would not exist. So, for a complete understanding of life in 

particular as a scientific process and science in general, one must 

understand Brownian motion which, despite being almost two hundred 

years old, still remains relevant in the twenty first century. 
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 [Abstract: In a resent paper the present author
1
 introduced and studied a 

type of Riemannian manifold called pseudo cyclic parallel Ricci symmetric 

manifold. Some properties of this manifold have been obtained in Riemannian and 

semi Riemannian manifolds]. 

 Key words : Torse-forming vector field, quasi Einstein manifold, perfect 

fluid space time of general relativity. 

 

1. Introduction: 

 In a paper M. C. Chaki2  introduced and studied a type of non-flat 

Riemannian manifold called pseudo Ricci symmetric manifold. 

According to him, a non-flat Riemannian manifold ���, ��, �� > 2�, is 

called pseudo Ricci symmetric manifold if its Ricci tensor S of type (0,2) 

is not identically zero and satisfies the condition	 

������, �� = 2������, �� + 	������, �� + 	������, ��				. . . �1.1� 
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for every vector field �, �, �	, where A is a non-zero 1-form defined by 

���, �� 	= 	����, � denotes the operator of covariant differentiation 

with respect to the metric tensor g. A is called associated 1-form and U is 

called associated vector field. An n-dimensional manifold of this kind 

was denoted by the symbol ����� . 

 In a recent paper the present author1 introduced and studied a new 

type of non-flat Riemannian manifold called pseudo cyclic parallel Ricci 

symmetric manifold. A non-flat Riemannian manifold ���, ��, �� > 2�, 

is called pseudo cyclic parallel Ricci symmetric manifold if its Ricci 

tensor  of type (0,2) is not identically zero and satisfies the condition 

������, �� = −	2������, �� + 	������, �� + 	������, ��	… �1.2� 

for every vector field	�, �, �	, where A is a  non-zero 1-form defined by 

���, �� = 	���� ...(1.3) 

�, � and � have the meaning already mentioned. An n-dimensional 

manifold of this kind is denoted by the symbol ������� . The main 

difference of these two manifolds is that in ����� , the Ricci tensor Is 

not cyclic parallel but in ������� ,  the Ricci tensor is cyclic parallel. 

This can be easily verified  from the definition of cyclic parallel Ricci 

tensor3 as given below: 

 The Ricci tensor S of type (0, 2) is called cyclic parallel if it 

satisfies the condition  

������, �� 	+ 	������, �� 	+ 	������, �� 	= 	0 ... (1.4)	

 So the name  pseudo cyclic parallel Ricci symmetric manifold has 

been chosen. 

 The aim of these paper is to study some applications of �������  

in Riemannian and semi Riemannian manifolds. 
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2. Preliminaries 

 In this section we shall obtain some formulas which will be used in 

sequel. 

 Let (��, g) be a Riemannian manifold and { � }, i = 1, 2, ……, n 

be an orthonormal basis of the tangent space at each point and i is 

summed for 1 ≤ " ≤ �. Let r be the scalar curvature4  of the manifold 

and it is defined by 

�� , � � 	= 	#. ... (2.1)	

 Let L be the symmetric endomorphism corresponding to the Ricci 

tensor  of type (0, 2) and is defined by  

��$�, �� 	= 	��, ��, ... (2.2) 	

 Putting �	 = 	�	 = �  in (1.2) and i is summed for	1 ≤ " ≤ �,  we 

get, 

%#��� 	= 	−	2����#	 + 	2��, �	�. ...(2.3)	

 From (1.2) we get 

������, �� −	������, �� = 

−	3'������, �� − 	������, ��(. ... (2.4) 

 Putting �	 = 	�	 = 	 �  in (2.4) and i is summed for 1 ≤ " ≤ �,  we 

get,%#��� 	= 	−	6'����#	– 	��, ��(. ... (2.5) 	

 From (2.3) and (2.5) we have 

��, �� 	= 	����#. ... (2.6) 	

 From (2.3) and (2.6) we get%#��� 	= 	0. ... (2.7) 

 

3.  Associated vector field U of  �+,+-.�/ 

as a torse forming vector field : 

 In this section we find the consequences if the associated vector 

field U of  ������� is a torse forming vector field. 
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Let U be a torse forming vector field5, then  

��U = 0X + ω(X)U, ... (3.1) 

where 0 is a non-zero scalar and ω is a non-zero 1-form. 

 We consider associated 1-form of  ������� is the associated  

1-form of  the torse forming vector field ρ,���� 	= 	3���. ...(3.2) 

 From (3.1) and (3.2) we get  

��U = 0X + A(X)U. ...(3.3) 

 From (2.5) and (2.6) we get  

#%���, �� 	= 		 ������, �� 		−	������, �� 	+ 	��, ����	−

	��, ����. ... (3.4) 	

 Putting �	 = 	� in (2.4) and using (2.5) we get 

������, �� 		−	������, �� 	= 	0. ... (3.5) 	

 From (3.3), (3.4) and (3.5) we get 

#%���, �� 	= 	0. ... (3.6)	

  From (3.6) we see that either the scalar curvature is zero or for 

non-zero scalar curvature the associated 1-form A is closed . 

 Hence we can state the following theorem: 

 Theorem 2.1: In a  ������� with associated vector field U 

defined by (3.3), either the scalar curvature is zero or for non-zero scalar 

curvature the associated 1-form A is closed . 

 To a vector field we attach the real �4 function f defined by  

5	 = 	
6

7
���, ��. ... (3.7) 	

 This function f is called the energy function of the vector field �. 

%5��� 	= 	�5	 = 	�
1

2
���, �� 	= 	�����,��	

													= 	��0�	 + 	�����,��	'by	�3.3�(	
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													= 	0���, �� 	+ 	����25	

													= 	 �0	 + 	25�����. ... (3.8)	

Putting �	 = 	� in (3.8) and using (3.7) we get  

%5��� 	= 	2�0	 + 	25�5. ...  (3.9) 	

 From (3.9) we conclude that the critical points6 of the energy 5	 of 

the vector field � are either zeros of 5 or zeros of 0	 + 	25. This leads to 

the following theorem: 

 Theorem 2.2: In a  ������� with associated vector field � 

defined by (3.3), the critical points of the energy 5 of the vector field �  

are either zeros of  f or zeros of 0	 + 	25.	

 If in particular f is constant, it follows from (3.7) and (3.8) 

0	 = 	−	����	. ... (3.10) 

 From (3.3) and (3.10) we get  

��U = - A(U)X + A(X)U. ... (3.11)   

 Putting X = U in (3.11) we get  

�:U = 0. ... (3.12)   

Hence we can state the following theorem: 

 Theorem 2.3:  If in a  ������� with associated vector field � 

defined by (3.3),  the energy 5 of the vector field � is constant, then the 

integral curves of � are geodesics. 

 

4. Semi Riemannian  �+,+-.�; 

 Let a semi Riemannian ������< be a general relativistic space 

time ��<, ��, where g is a Lorentz metric with signature �+,+,+. −�. 

We consider general relativistic perfect fluid space time ��<, �� with 
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unit time like velocity vector field as the associated vector field	� of 

������< i.e.,���, �� 	= 	−	1. ...(4.1) 

 The sources of any gravitational field (matter and energy) are 

represented in relativity by a type of (0,2) symmetric tensor = called the 

energy momentum tensor7,8,9, 10  . = is given by  

=��, �� 	= 	 �>	 + 	?��������� 	+ 	?���, ��, ... (4.2) 	

where > and ? are the energy density and the isotropic pressure of the 

fluid respectively, while A is defined by  

���, �� 	= 	����. ... (4.3) 

 For a perfect fluid space time, Einstein equation without 

cosmological constant is as follows: 

��, �� −	
1

2
#���, �� 	= 	@=��, ��,																																																			…	�4.4� 

where @ is a gravitational constant. 

 From (4.2) and (4.4) we have  

��, �� −	
1

2
#���, �� 	= 	@'�>	 + 	?��������� + 	?���, ��(.		…	�4.5� 

 Let {� }, " = 1, 2, 3, 4 be an orthonormal basis of the frame field at a 

point of the space time and contracting (4.5) we get  

#	 = 	@�>	– 	3?�. ...(4.6) 	

If #	 ≠ 	0 we have from theorem 2.1%���, �� 	= 	0 ...(4.6 a) 

which gives �����, �� 	− 	���, ���� 	= 	0. ... (4.7) 

From (4.1) we have  �����,�	� 	= 	0. ... (4.8)	

putting �	 = 	� in (4.7) and using (4.8) we get  

���, �:�� 	= 	0, 5F#	GHH	�.	 ...(4.9) 

  Hence  �:U = 0. Since � is the velocity vector field of the 

������< space- time, it follows that for a perfect fluid ������< , the 
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fluid has zero acceleration and the integral curves of the velocity vector  

field are geodesics. This leads to the following theorem: 

 Theorem 3.1: In a perfect fluid ������< space-time with time 

like velocity vector field defined by (3.3) having Einstein equation 

without cosmological constant, the fluid has zero acceleration and the 

integral curves of the velocity vector field are geodesics.  

 Putting �	 = 	� in (4.5) and using  (4.1) and (4.6) we get  

��, �� 	= 	−	
I

7
�>	 + 	3?�����. ...(4.10) 

 From (2.6) and (4.6) we get ��, �� 	= 	@�>	– 	3?�����. ... (4.11) 

 From (4.10) and (4.11) we get >	 = 	?. ... (4.12) 	

 From (4.5), (4.6) and (4.12) we get  

��, �� 	= 	2@?��������. ...(4.13) 

 We know that , if the energy momentum tensor = of the space- time 

obeys the time like convergence condition9 , then the Ricci tensor of the 

space- time satisfies the condition  

��, �� > 0 for every time like vector field �. ...(4.14) 

 Putting �	 = 	�	 = 	� in (3.13) and using (4.1), (4.12) and (4.14) 

we get 

>	 = 	?	 = 	
��, ��

2@
> 0																																																																				 …	�4.15�		

  Hence in this space- time pure matter exists. This leads to the 

following theorem: 

 Theorem 3.2 : In a perfect fluid ������< space-time  having 

Einstein equation without cosmological constant, if the energy 

momentum tensor T of the space- time obeys the time like convergence 

condition , then the space-time under consideration contains pure matter.         
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In the year 2000, Chaki and Maity11  introduced the notion of quasi 

Einstein manifold whose Ricci tensor S of type (0, 2) is not identically 

zero and satisfies the condition  

��, �� 	= 	J	���, �� 	+ 	K	��������, ...(4.16) 

where J, K are scalars of which K	 ≠ 	0 and � is a non-zero 1-form 

defined by ���, �� 	= 	����, � being a unit vector field on the manifold. 

Comparing (4.13) and (4.16)  we see that this space-time  is a special 

type of  quasi Einstein manifold with J	 = 	0	G�%	K	 = 	2@?	 ≠ 0.	This 

leads to the following theorem: 

 Theorem 3.3: A perfect fluid ������< space-time having 

Einstein equation without cosmological constant is a special type of 

quasi Einstein manifold. 

Putting  �	 = 	� in (3.13) and using (4.1) we get  

��, �� 	= 	−	2@?	���, ��. ... (4.17)	

 It follows from (4.17) that – 2@? is an eigenvalue of the Ricci 

tensor 	and �	is an eigenvector corresponding to this eigenvalue. 

 Let L be another eigenvector of  different from �. Then V is 

orthogonal to �. Hence  

���, L� 	= 	0, F#, ��L� 	= 	0.	 ... (4.18) 	

 Putting �	 = 	L in (4.13) and using  (4.18) we get 

��, L� 	= 	0. ... (4.19) 	

 From (4.19), it follows that 0 is another eigenvalue of  

corresponding to the eigenvector L. Let the multiplicity of −2@? be m 

and the multiplicity of 0 be M	– 	4. Then we haveM. �−	2@?� 	+ 	�4	 −

	M�	0	 = 	#	 = 	−	2@? [by (4.6) and (4.12) ]. 
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 Since @	 ≠ 	0, ?	 ≠ 	0, we have  M	 = 	1. Thus the multiplicity of 

the eigenvalue – 	2@?  is 1 and that of the eigenvalue 0 is 3. Hence the 

Segre characteristic12  of  is [(111), 1]. This leads to the following 

theorem: 

 Theorem 3.4: In a perfect fluid ������< space-time having 

Einstein equation without cosmological constant, the Segre characteristic 

of  is [(111), 1].  

 It is known that the energy and the force equations7  for a perfect 

fluid are as follows: 

�>	 = 	−	�>	 + 	?�%"N�    and ...(4.20) 

�>	 + 	?�	�:�	 = 	−	�#G%	?	–	��?��. ... (4.21) 

Since  by (2.7) r is constant , it follows from (4.6) and (4.12) that σ and ? 

are both constants. Hence we get from (4.20) and (4.21) 

P"N	�	 = 	0   and ... (4.22) 

�:U = 0. ...(4.23) 

 But div � represents the expansion scalar and ∇:U represents the 

acceleration vector. In view of these it follows from (4.22) and (4.23) 

that the fluid has vanishing expansion scalar and vanishing acceleration 

vector. Hence we can state the following theorem: 

 Theorem 3.5: In a perfect fluid ������< space-time having 

Einstein equation without cosmological constant, the fluid has vanishing 

expansion scalar and vanishing acceleration vector. 

 

5. Conclusion 

 In section 2 we have considered Pseudo cyclic parallel Ricci 

symmetric Riemannian manifold It is shown that in a  ������� with 
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associated vector field U defined by (3.3), the critical points of the 

energy 5 of the vector field �  are either zeros of  f or zeros of 0	 +

	25.	It is also shown that if the energy	5	of the vector field � is constant, 

then the integral curves of � are geodesics. In section 3 we have 

considered semi Riemannian  general relativistic space-time. It is shown 

that in a perfect fluid ������< space-time  having Einstein equation 

without cosmological constant, if the energy momentum tensor = of the 

space- time obeys the time like convergence condition , then the space-

time under consideration contains pure matter and the fluid has vanishing 

expansion scalar and vanishing acceleration vector.    
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 [Abstract: In the present study, an attempt is made to propose a new 

parameter reduction technique for weather forecasting at Kolkata (22.53º N, 88.33º 

E), India, during the pre-monsoon season (March, April and May). The newly 

suggested technique is based on fuzzy multidimensional degree of compatibility. It 

can handle inherent non-linearity in a physical phenomenon. It is interesting to 

note that for the prediction of weather for next 12 hours based on Radio/Rawin 

Sonde observation at 1200 UTC of a day, the technique is better than any previous 

technique, although the previous techniques are however almost equally suitable to 

predict the weather of the next 12 hours based on Radio/ Rawin Sonde observation 

at 0000 UTC. The main objective of the study is to reduce the number of 

parameters without losing any important information for predicting the future 
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situation. It is interesting to note that the methodology suggested in the study helps 

reduce the number of the parameters from 20 to 8 and 12 respectively for two 

different situation , fair weather and convective development for morning and 

evening to furnish almost 70% correct results. The degrees of compatibility are 

defined using a training data set for the period 1985-1996 and validated for the 

period 1997-1999]. 

 Keywords: Convective development, forward selection rule, fuzzy 

multidimensional compatibility method, instability. 

 

1. Introduction 

 Prediction of any atmospheric phenomenon is always of ultimate 

interest not only to the weather forecasters but to the common people as 

well. Specially, in recent years, there has been growing interest in the 

prediction of pre-monsoon convective developments (CD), not because 

of the possible hazards caused by them, but for their beneficial effects 

too like cooling due to rain during the hot summer days. 

 The convective developments occurring during March, April and 

May in Kolkata, India are termed as premonsoon thunderstorms. 

Different statistical techniques, like the principal component analysis 

(PCA), linear discriminant analysis (LDA), cluster analysis technique 

were applied by previous workers to identify the significant parameters 

for the occurrence of pre-monsoon thunderstorms (TS) in Kolkata. The 

linear discriminant analysis (LDA) technique alone as well as in 

conjunction with principal component analysis (PCA) could be 

successfully applied to a set of 20 parameters to reduce the dimension of 

the data matrix and predict the pre-monsoon thunderstorms for 

Kolkata.1,2,3 Convective developments are generally favored by 

convective instability, abundant moisture at lower levels, strong wind 
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shear, and a dynamical lifting mechanism that can release the instability.4 

Also, the vertical shear of the environmental winds has to match the 

value of the convective instability for proper development of a large 

convective cloud.5  The presence of conditional instability is an essential 

criterion for supporting electrification and lightning.6  In addition to the 

parameters mentioned, two other parameters, viz. (���	– 	��	) and  

(� − �
�
) are also present, where ��� and �� denote the saturated 

equivalent potential temperature and equivalent potential temperature 

respectively. � is a level pressure and �
�
 is the pressure at the 

corresponding lifting condensation level. 

 The thermodynamic parameter (���	– 	��) was introduced by 

Betts7  as a measure of the unsaturation of the atmosphere. PLCL for the 

surface parcel was considered as the cloud base8  and hence (PPLCL) is 

taken as a forcing factor for the saturation of a parcel. Cluster analysis 

and LDA technique9  were utilized to describe a multivariate statistical 

model for forecasting anomalies of surface pressure present over Europe 

and North Atlantic. In another study, multiple linear regression10 was 

compared with LDA for making hind casts and real time forecasts of 

north-east Brazil wet season rainfall using sea surface temperature. 

Though a number of attempts11, 12 were made to establish empirical 

models for the prediction of atmospheric stability/instability, the work 

done on Kano13 is perhaps the first successful attempt for tropical region. 

Another attempt was made to predict the occurrence of CD at Dhaka 

(Bangladesh) in terms of stability indices.14  

 Fuzzy set theory, was originally proposed by Zadeh 15  aimed at 

imitating the model of human thought process. The basic premises of bi-

valued true-false Boolean notion are redefined here. In spite of strong 
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resistance to fuzzy logic, many researchers started working in the field 

during 1965- 1975. During the first decade, many mathematical 

structures were fuzzified by generalizing the underlying sets to be fuzzy, 

i.e. the sets with no sharp boundaries. The 90s was an era of new 

computational paradigms. The applications of fuzzy set theory include 

studies in many fields, e.g. meteorology, biology and others.16 

 In 1995 Murtha17 applied the fuzzy logic in operational 

meteorology. Yu and Tao18  developed a fuzzy multi-objective function 

for rainfall-runoff model calibration in 2000. In 2002, Gomes and 

Casanovas19 reported a case study of solar irradiance which involved 

fuzzy logic and meteorological variables. In 2003, Mackay20 used fuzzy 

logic in automated parameterization of land surface process models. 

Chang et al.21 applied fuzzy theory in genetic algorithm to interpolate 

precipitation. Mitra et al.22  used rule-based fuzzy inference system for 

weather forecasting. Also Ma et al.23 applied the same technique for the 

verification of meso-scale NWP forecasts. Hubbert et al.24 developed a 

technique for real time identification and filtering using fuzzy logic. 

Dhanya and Kumar25  used a fuzzy rule based modeling approach for the 

prediction of monsoon rainfall in India. In the year 2011 a comparison 

between LDA technique and fuzzy membership roster method for pre-

monsoon weather forecasting was presented by S.Ghosh et al.26  

Recently Mohammad Iqbal et al predicted weather pattern using fuzzy 

rough clustering.27 

 A new computational technique based on fuzzy multidimensional 

degree of compatibility is proposed in the work. The technique suggested 

in the study helps one to select the most effective combination of 

significant parameters out of 20 to discriminate the two important 
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situations, convective development and fair weather 12 hours ahead 

during the pre-monsoon season of Kolkata. The methodology and the 

corresponding results are discussed in detail in the respective sections. 

 

2. Data 

 The primary data collected are utilized to calculate the necessary 

thermodynamic and dynamic parameter for the study. The fuzzy rules for 

forecasting the convective development at Kolkata are constructed 

utilizing all the available radiosonde data of 12 years(1985-1996) and for 

the validation of the technique, the data of 3 years(1997-1999) are used. 

 The parameters ����	– 	��, (P – PLCL), 
������ , ����� , ����		for five 

different layers are used to construct the proposed fuzzy LOGIC BASED 

rule to discriminate the situations.28 

 In the literature, �� (�	 = 1 to 20) represent the following 

thermodynamic and dynamic parameters.  The study is however confined 

upto 500 hPa, due to the importance of this layer mentioned by many 

previous researchers. 

O� = (���	– 	��	) at 1000 hPa level ; O� = (P-PLCL) at 1000 hPa level; 

O� = 	����/�  at 1000-850 hPa layer ; O! 	 = 	���/�  at 1000-850 hPa 

layer; O" = 	�#/�  at 1000 –850 hPa layer; O$ =	(���	– 	��	)	at 850 hPa 

level; O% = (PPLCL) at 850 hPa level; O& 	 = ����	/�  at 850-700 hPa 

layer; O' = 	���/�  at 850-700 hPa layer; O�( = �#/�  at 850-700 hPa 

layer; O�� =	 (���	– 	��	) at 700 hPa level; O�� = (P-PLCL) at 700 hPa 

level; O�� = ����/�  at 700-600 hPa layer ; O�! = ���/�  at 700-600 

hPa layer; O�" 	= �#/�  at 700 –600 hPa layer; O�$ =	 (���	– 	��	) at 

600 hPa level ; O�% =	(P-PLCL) at 600 hPa level; O�& 	= ����/�  at 
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600-500 hPa layer; O�' = ���/� 	at 600-500 hPa layer; O�( = �#/�  at 

600–500 hPa layer.  It is worth mentioning that the values of (���	– 	��) 
and (P – PLCL) at the lower level of each layer have been treated as their 

respective values for that layer. Here, z stands for vertical height, 

����/�  for conditional instability, ���/� 	for convective instability 

and �#/�  for the vertical shear of horizontal wind. 

 

3. Objective of the study 

 The main objective of the study is to construct a computational 

technique, which is simpler and cost effective compared to other existing 

methods of pre-monsoon weather prediction. Not only that another aim is 

to construct a general rule for parameter reduction which can be applied 

to other fields too, because the fuzzy logic based rules are more flexible 

to handle the nonlinearity of any natural phenomenon. 

 

4. Methodology 

The present study considers separately the following four situations 

1. Prediction of convective development from the data of 0000 UTC 

(Morning CD or MTS) 

2. Prediction of fair-weather from the data of 0000 UTC (Morning FW 

or MNTS) 

3. Prediction of convective development from the data of 1200 UTC 

(Evening CD or ETS) 

4. Prediction of fair-weather from the data of 1200 UTC (Evening FW 

or ENTS). 
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 All the above mentioned predictions are made for the next 12 

hours from the time of observations (It is found by the previous workers 

that the pre monsoon atmosphere in Kolkata differs structurally in 

Morning and Evening.1  For each situation the prediction is made on the 

basis of the multidimensional degree of compatibility described in the 

subsection 4.1 as it is well known that any atmospheric phenomenon is 

essentially complex and multivariate in nature. The forward selection 

rule as discussed in subsection 4.2 is applied to select the most effective 

combination of parameters for discriminating the two cases, convective 

development and fair weather. The combinations of different parameters 

are selected since it is well known that any atmospheric phenomenon is 

essentially complex and multivariate in nature. The degrees of fuzziness 

of the underlying pattern classes are computed using membership 

validity measures with the help of the formula 8 in subsection 4.3. 

Finally the basic features of the methodology are discussed in subsection 

4.4. Some basic Fuzzy Logic based rules used in the study are described 

in the following section: 

4.1 Multidimensional degree of compatibility and justification of the 

choice of membership function 

 It is well known that a membership function is so constructed that 

the values assigned to the elements of the universal set fall within a 

specified range and indicate the membership grade of these elements in 

the set in question. The set defined by such membership function is 

called a fuzzy set. Let S denote the universal set of the parameters. Then 

the membership functions μ* and μ+ by which the fuzzy sets X and Y are 

defined have the forms: ,- : .−> [0,1] , ,1 : .−>[0,1] where [0,1] 

denotes the interval of real numbers from 0 to 1, inclusive.29  In the study 
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the membership functions for the fuzzy sets of parameters are chosen to 

be Gaussian Membership Function. The justification for this choice is 

given at the end of this section. 

 Here we consider the two groups Y and X which are the two 

standard pattern classes for convective development and fair weather 

respectively. The sets Y and X are termed as fuzzy sets since it is 

difficult to identify sharp boundaries between these two sets so far the 

parameters convective instability, conditional instability and vertical 

shear are concerned. The degrees of compatibility of a parameter, �� 
(� = 1 to 20) with the standard pattern classes, Y and X are computed on 

the basis of Gaussian membership function as follows: 

21(��) = �34 5– (�� −6�78)�(9���) : , � = 1	;<	20																																						. . . (1) 
2-(��) = �34 5– (�� −6�78)�(9���) : , � = 1	;<	20																																					. . . (2) 
6�@A	and	9�@A 

where: 

6� :  mean of the	�th parameter of CD days (123 days for morning 

and 165 days for evening). 

9�78 :  standard deviation of the ith parameter of CD days (123 days 

for morning and 165 days f or evening). 

6�@A : mean of the ith parameter of FW days (280 days for morning 

and 201 days for evening). 

9�@A :  standard deviation of the ith parameter of FW days (280 days 

for morning and 201 days for evening). 
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 In the present study, the range of values of the degree of 

compatibility is the interval (0,1).Here, the Gaussian function has two 

parameters m and σ, such that 

Gaussian	(��, 6�, 9�) = exp 5– (�� −6�)�(9��) :																																					 . . . (3) 
where 6�	and	9� denote the center and width of the values of �� 

respectively. Since, the numerical values of the selective parameters are 

not scattered, the respective means of the thermodynamic and dynamic 

parameters represent the two patterns in a reliable way. 

 Finally, the degrees of compatibility of a day (i.e. a relevant 

pattern) defined by  O = (�� , … … . ,	�� ) with the two standard pattern 

classes, Y and X are constructed as follows: 

21(�) = N21	21(��), � = 1	to	20																																																									. . . (4) 
2-(�) = N21	2-(��), � = 1	to	20																																																								. . . (5)	
 If, now, an unknown pattern or a day, say S = (T�, 	T�, … , T�() is 

given, where T� is the quantified value associated with the �th parameter 

of the pattern, then the degrees of compatibility of S with the standard 

patterns, Y and X, denoted by 21(U) and 2-(U) respectively, are 

computed as follows: 

21(S) = N21	21(S�), � = 1	to	20																																																									. . . (6) 
2-(S) = N21	2-(S�), � = 1	to	20																																																								. . . (7) 
 An unknown pattern or a day, U is classified by the larger value 

of 21 (U) or 2-(U), i.e. if 21 (U) > 2-(U), then there is a possibility for 

U to be more of the pattern Y than of the pattern X for next 12 hours. So 
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it may be predicted that U is expected to be a day with convective 

development for next 12 hours.30 

 Let us now justify the choice of membership function. 

Justification for choice of membership function: 

 It is worth mentioning that there is no sound principle yet for 

guiding the choice of membership function or degree of compatibility. It 

is well known that there does not exist any standard method yet to 

choose a membership function. But, Gaussian membership function has 

been selected here because of the following reasons: 

(i) Since some of the parameters are found to follow Gaussian 

distribution and usually the physical parameters are assumed to be 

Gaussian or quasi Gaussian in nature, for each parameter, the 

Gaussian membership function has been chosen to construct the 

one dimensional or univariate degree of compatibility. 

(ii) Gaussian membership functions are continuously differentiable as 

well as parameterizable.  

(iii) Gaussian membership functions are factorizable. Hence, we may 

synthesize a multi dimensional or multivariate degree of 

compatibility as the product of one dimensional or univariate 

degree of compatibility. 

 That is why the product forms have been used in the relations (6) 

and (7) to handle the nonlinearity . 10 This product form of membership 

functions is used already by Dhanya and Kumar.23 

 The nature of the membership function for an individual 

parameter ��� – �� is shown in the following graph as an example: 
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Figure 1  

Graph plotting membership values v/s	(���	– 	��) 
4.2 Forward Selection Rule for structure specification: 

 Step 1: Each of the twenty parameters is tested using the selection 

rule mentioned in the above section and that parameter is selected which 

produces maximum number of correct results for the data set used for 

validation. 

 Step 2: The combination of the remaining parameters with the 

selected one from Step 1 are tested to select the best combination (of two 

parameters). 

 Step 3: Proceeding as above the best combination of three 

parameters is selected. The process is repeated for all possible 

combinations of the twenty parameters. 

 This part of methodology is described with the help of the 

following block diagram: 

Block Diagram 
 

 

 

 

 

 

……and so 
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4.3 Degrees of fuzziness 

 In order to measure the degree of fuzziness of the pattern classes 

X and Y, the membership based validity measures, named as the 

partition coefficients31 are computed separately for the four conditions as 

follows: 

X
YZ[\]^ = _ �&!` ∑b2-�Tc + 21�Tce
YZ[\[f = _ �!!` ∑b2-�Tc + 21�Tce
YZ[g]^ = _ �$"` ∑b2-�Tc + 21�Tce
YZ[g[f = _ �"�` ∑b2-�Tc + 21�Tce hii

j
iik

 ... (8) 

where Tc	is the jth parameter for an unknown pattern or day, belonging to 

the dataset used for validation. 

4.4 Basic Features of the Methodology 

 The present work includes the following three main stages: 

 Stage I: First the study is performed with all the 20 parameters 

using Forward Selection Rule described above. 

 For selecting single parameter equation (1) and (2) are used 

whereas for the selection of more than one parameters equations (4) and 

(5) are used. The corresponding results are presented with the 

combinations of all the twenty parameters in Table I. Since in this stage 

no common combinations of the parameters can be selected to 

discriminate the two situation under study so we proceed to Stage II. 

 Stage II: The combinations are considered first, which produce at 

least 75% correct result in each case. Further from the newly considered 

combinations, only the combinations of the physical parameters which 
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are common for describing the situations in morning and evening are 

taken into account. The multidimensional degrees of compatibility of 

these new combinations are computed as before using equations (6)  

and (7). 

 Stage III: The membership validity measures are computed using 

the formula (8). 

Table I 

Nature of 

Day 

 

Total No. of 

days for 

Verification 

No. of 

Parameters 

involved 

No. of 

Correct 

Prediction 

% of 

Correct 

Prediction 

ETS 53 20 24 45.28 

ENTS 65 20 24 36.92 

MTS 44 20 21 47.73 

MNTS 84 20 72 85.71 

Summary of the results from Stage I 

 

5. Results and Discussion 

 Stage I: From our calculations it is found that the best 

combinations are obtained with O", O��, O�", O�, O�&, O!, O�(, O��, 

O�$, O$ for ETS. 

 Similarly we get the best combinations as O&, O�, O��, O!, O��,  

O�(, O�!, O'	for ENTS; O��, O�', O�(, O�(, O&, O!, O�", O�&, O�!, O", 

O' for MTS; O�', O��, O�(, O�", O�&, O�(, O�, O�, O&	for MNTS 

respectively. 
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 It is clear that there exist no combinations with common 

parameter to discriminate the situations either for Morning or Evening. 

It may also be noticed from Table I that the average percentage of correct 

prediction with all the twenty parameters is not satisfactory except in 

MNTS. 

 Hence the Stage II is performed to select effective combinations 

with reduced number of parameters which may discriminate the 

situations, fair weather and convective development for morning and 

evening. 

 Stage II: The selection criterion described in subsection 4.4 helps 

reduce the number of selected parameters in each case, such that a 

combination of 12 common parameters for morning and a combination 

of 8 common parameters for evening are obtained to discriminate/ 

predict the situation. 

 The parameters thus chosen are as follows: O� = (θes – θe ) at 

1000 hPa level ; O� = (P-PLCL) at 1000 hPa level; O! = ∂θe/∂z at 1000-

850 hPa layer; O" = ∂v/∂z at 1000 –850 hPa layer; O& =∂θes /∂z at 850-

700 hPa layer; O�( = ∂v/∂z at 850-700 hPa layer; O�� =∂θes/∂z at 700-

600 hPa layer ; O�! = ∂θe/∂z at 700-600 hPa layer; O�" =∂v/∂z at 700 –

600 hPa layer; O�&= ∂θes/∂z at 600-500 hPa layer; O�' =∂θe/∂z at 600-

500 hPa layer; O�(	= ∂v/∂z at 600–500 hPa layer for the morning are 

selected. 

 O� = (θes – θe ) at 1000 hPa level ; O�=∂θes/∂z at 1000-850 hPa 

layer ; O! = ∂θe/∂z at 1000-850 hPa layer; O�� = (θes – θe ) at 700 hPa 

level; O�� = (P-PLCL) at 700 hPa level; O�� =∂θes/∂z at 700-600 hPa 
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layer ; O�" = ∂v/∂z at 700 –600 hPa layer; O�( =∂v/∂z at 600–500 hPa 

layer for the evening are selected. 

 The results of the categorical discrimination of an unknown day 

(U) belonging to the dataset (1997, 1998 and 1999) on the basis of the 

newly selected combinations are presented in Table II. 

 As seen from Table II the combinations with the reduced number 

of parameters can discriminate the situations almost successfully. The 

success rate is 75% to 80% in morning and it is 71% to 75% in evening 

so far these data sets are concerned. 

Table II 

Nature of 

Day 

 

Total No. of 

days for 

Verification 

No. of 

Parameters 

involved 

No. of 

Correct 

Prediction 

% of 

Correct 

Prediction 

ETS 53 08 40 75.5 

ENTS 65 08 46 71 

MTS 44 12 33 75 

MNTS 84 12 68 80.9 

Categorical Discrimination of an Unknown Day(U) 

Stage III: The membership validity measures for ETS, ENTS, MTS, 

MNTS are computed with the help of relation (8) and are presented in 

Table III. 

 Regarding the membership validity measures it may be stated that 

the classes X and Y are not hard since VPCMFW ≠1, VPCMCD ≠1, 

VPCEFW ≠1 and VPCECD ≠1. 
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 Hence the fuzzy rule based technique suggested here, has a 

possibility for improvemen.31 

Table III 

Nature of Day Membership based validity measure (VPC) 

ETS Y 0.110 

MTS Y 0.001 

MTS Y 0.001 

MNTS Y 0.180 

Membership based validity measure 

 

6. Conclusion 

 It is worth mentioning that all the above thermodynamic and 

dynamic parameters are physically important for the situations, but for 

the operational purpose or for parameterization it is better to select the 

most effective combination of a fewer number of variables. 

 The program used for the study is developed by the authors 

themselves. The observation made in the study indicates that the 

computationally simpler as well as cost effective technique developed by 

the authors may help one reduce the number of parameters to analyse 

pre-monsoon atmospheric situation of a place provided a proper training 

set is available. But there are two limitations of the study 

(i)  The entire technique is context bound. 

(ii)  The data set used here is not primary, but secondary and assumed to 

be reliable. 
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 The first limitation is inherent with any fuzzy logic based method. 

But to improve the reliability of data, primary data should be used 

whenever possible. 

 Incidentally the computational technique is validated in the 

present work with atmospheric data of Kolkata, India. But it is expected 

to work in other fields too for parameter reduction. Not only that but 

proper choices of membership functions may improve the technique 

effectively.  
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