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Abstract:  

 
The invention of laser and its demonstration in 1960 by Theodore Maiman had enabled the scientists to 

tread in a numerous hitherto untrodden paths of which two important ones are Fiber Optics in 1960 and 

Nonlinear Optics in 1961.  

In 1953, Narinder Singh Kapany worked on transmission through fibres, achieving good image 

transmission through a large bundle of optical fibres for the first time and coined the term “Fiber Optics”. In 

1960, Elias Snitzer made great contributions by developing single mode fibers, fiber lasers, fiber amplifiers, 

double clad fiber lasers, and even initiating the work that led to UV written Bragg gratings. However, it was 

Charles Kuen Kao who in 1960 recognized that optical fibers could be used for communications, if one used 

a very pure glass and together with laser technology, he laid the groundwork for fiber optics in 

communication in 1966. The main problem was the high losses of optical fibers. Losses in excess of 1000 

dB/km were usual characteristics of fibers available during 1960s. A breakthrough occurred in 1970 when 

the losses could be reduced to below 20 dB/km. At about the same time, GaAs semiconductor lasers, 

operating continuously at room temperature were demonstrated. The simultaneous availability of compact 

sources and of low-loss optical fibers led to a worldwide effort for developing optical fiber communication 

systems. Some basic characteristics of fiber optics will be discussed. 

In 1961, Peter Franken who had already envisaged that a highly intense optical radiation can drive the 

electrons of a material medium to oscillate anharmonically to reveal its nonlinear optical behaviour did 

demonstrate first second harmonic generation of optical radiation in quartz using high energy Ruby Laser 

opening the field of nonlinear optical phenomena. By the end of 1962, Nicolaas Bloembergen and his co-

workers had devised detailed theoretical model for such nonlinear processes of mixing two or more light 

waves. Nonlinear frequency conversion in nonlinear media can not only allow extension of wavelengths of 

fixed frequency lasers by harmonic generation processes but also have the capability to offer broadly tunable 

coherent radiations through the processes of sum frequency mixing and difference frequency mixing of two 

coherent sources as well as through optical parametric oscillations. Some basic ideas of this optical 

frequency conversion will be touched upon. 

 

 



 

 
Diary Page of Gordon Gould 

 

The 28 years (1959 to 1987) patent war that it took for Gould to win the rights to his inventions became 

known as one of the most important patent battles in history. In the end, Gould was issued forty-eight 

patents, with the optical pumping, collisional pumping, and applications patents being the most important. 

Between them, these technologies covered most lasers used at the time. For example, the first 

operating laser, a ruby laser, was optically pumped; the helium–neon laser is pumped by gas 

discharge. 

The delay—and the subsequent spread of lasers into many areas of technology—meant that the patents were 

much more valuable than if Gould had won initially. Even though Gould had signed away eighty percent of 

the proceeds in order to finance his court costs, he made several million dollars.  

 

Use of the term for 

the first time 

https://en.wikipedia.org/wiki/Patent_war
https://en.wikipedia.org/wiki/Patent_war
https://en.wikipedia.org/wiki/Ruby_laser
https://en.wikipedia.org/wiki/Helium%E2%80%93neon_laser
https://en.wikipedia.org/wiki/Gas_discharge
https://en.wikipedia.org/wiki/Gas_discharge


 

 

 

              

 

 

 

 

 



Why is the bandwidth of optical fiber high? 

  

Fiber-optic bandwidth is high both because of the speed with which data can be transmitted and the distance 

that data can travel without attenuation. 

Optical fiber transmits data as pulses of light through glass wire, allowing data to travel at nearly the speed 

of light. 

Fiber-optic cable has a wide range of frequencies over which data can travel that offers little loss or 

attenuation over distance. 

 

What determines the bandwidth of optical fiber versus copper wire? 

 

The word bandwidth has two definitions, and they're closely related. 

In computing and digital electronics, bandwidth means how much information can be transported over a 

channel per unit time, usually measured in bits per second. 

In analog electronics, a band is a range of frequencies, and the bandwidth is the highest frequency minus the 

lowest frequency in the band, usually measured in Hertz. For example, the band of frequencies from 100 Hz 

to 130 Hz has a bandwidth of 30 Hz. 

 

Now, when you send information down a copper cable, the frequencies that travel well (not too much loss) 

go from DC (0 frequency) to maybe 1 GHz. That's a bandwidth of 1 GHz. 

When you send information down a fiber-optic, the frequencies that travel well (not too much loss) go from 

maybe 175 THz to 250 THz. That's a bandwidth of 75 THz = 75,000 GHz. 

Thus a fiber can carry about 75,000 times more information than a copper cable. 

 

The bandwidth differences are, effectively, the difference between photons and electrons. Copper uses 

electrons for data transmission, while fiber uses photons. Light is faster than electrical pulses, so fiber can 

transmit more bits of data per second 

 

 

 

Narinder Singh Kapany was a pioneering scientist, entrepreneur, and philanthropist who served as a Regents 

Professor at UC Santa Cruz and a trustee of the UC Santa Cruz Foundation. 

Kapany introduced the term “Fiber Optics” in a 1960 article in Scientific American, wrote the first book 

about the new field, and played a prominent role in advancing the field both as a researcher and as the 

founder of several optical technology companies. 

As a graduate student working alongside Harold Hopkins at Imperial College in 1953, Kapany was the first 

to successfully transmit high-quality images through a bundle of optical fibers. 



 

 

 

 

 



 

 

Numerical Aperture: 
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Refractive index characteristics of Graded Index Fiber: 

 

 
 

In most commercial fibers, the ratio of core to cladding radius  

                               a1/a2  0.6 

Thus for a 50 m thick core i.e. diameter 50 m and hence radius 25 m the cladding thickness is typically about  15 

m. How? 

                               a1 = 25 m 

 a2 = 25/0.6 m = 40 m which is cladding radius. 

 Cladding thickness = (4025) m = 15 m   

 



 

For propagation in z direction (since we are concerned with a structure that is expected to guide waves in z 

direction),   

Ey(z,t) = E0e
i(tz)

 

Hy(z,t) = H0e
i(tz)

 

 

Then, E/z =  iE               and         E/t =  iE 

          H/z =  iH              and         H/t =  iH 

We assume, conductivity  = 0. Here  is known as propagation constant which is actually z component of 

k.  
We shall consider cylindrical coordinate system in which x, y and z are replaced by, 

x = rcos  (r)                   y = rsin ()                 z = z ( )   
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The wave equations for Ez(r,) and Hz(r,) are modified in cylindrical coordinate as: 

 

 

 

 

 

 

 

 

And these two wave equations are applicable in both the core and cladding. 

 

Eqs. (5) and (6) are solved to obtain expressions for Ez and Hz in a round optical fiber. These expressions 

will then be substituted in Eqs.(1) to (4) to obtain a complete description of the fields in a fiber. 

Let us try technique of separation of variables to obtain solution of Eq.(7). We assume, 

        Ez(t,r,,z) =Ag(r)h()e
i(tz)

          (7) 

Since the fiber has circular symmetry we will choose a circular function as a trial solution for h() as  

                  h() = e
j

 

Where  is a positive or negative integer. 

Substituting all these,  

 

 

 

 

 

Which is a Bessel’s differential equation. Its solutions are Bessel function.  
The constraints we must place on g(r) are, 

                 g(r) is finite for r < a 

             & g(r)             

Where a is the radius of the core. That means g(r) is finite inside core but zero outside.  
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Here J(r) is the Bessel function of the first kind and K(r) is the modified Bessel function of the second 

kind.  

The roots of J(x) = 0 are the zeros of the Bessel function which will be useful in determining which modes 

can propagate in the fiber.  

The K(x) functions are +ve for all x. They are infinite for x= 0 and approach 0 as x increases i.e.  

                      K(x)      for x = 0  

                  & K(x)     as x    
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The boundary conditions for the fields at the core-cladding interface (r = a) are: 

Ez1 = Ez2 

E1 = E2 

Hz1 = Hz2 

H1 = H2 

Where subscripts 1 and 2 refer to the fields in the core and cladding respectively. Applying these conditions 

one can obtain the constants A, B, C and D. 

 
 

 



 

 
 

 

 

 

 



 
 

 
A skewed ray lies in a plane offset from the fiber axis by a distance R. The ray is identified by the angles  

and  . It follows a helical trajectory confined within a cylindrical shell of radii R and a. The projection of 

the ray on the transverse plane is a regular polygon that is not necessarily closed.  



 
 

 
 

 

 



 

Delay Distortion in a Single Mode Optical Fiber 
 

The degradation of an optical pulse propagating through the fiber specifically occurs due to: 

 

Intra Modal or Chromatic dispersion: 
1. Material dispersion (Dm) 

2. Waveguide dispersion (Dw) 

 

The first part is the dispersion induced on the light by the material used in the waveguide and this is known 

as material dispersion. The second part is the impact of the actual waveguide structure, and it is known as 

waveguide dispersion. 

Dispersion D of a fiber is measured by, 

                                    D = (1/L) (dg/d) ps/km.nm 

i.e. Picoseconds per nanometer of source bandwidth per kilometer of distance traversed. 
 

The speed of propagation of monochromatic light in an optical fiber is, 

uphase = c/n1() 
which is the phase velocity of the light wave and it is different for different wavelength. 

 
 

So corresponding to the group velocity, say vg, a group index Ng, can be defined as corresponding to the 

group of frequencies around .  Therefore,  

vg = c/Ng 

For pulse travelling L distance, Group delay g is defined as: 

g = L/vg = L.dk1/d =  L.d(n1./c)/d  

    = (L/c)d(n1.)/d = (L/c)[n1+.dn1/d] 

    = L.Ng/c   

 Ng = n1 + .dn1/d 

         = n1 + .(dn1/d).(d/d) 

         = n1 + .(dn1/d).( /)  [as, = 2c/]  

         = n1  .(dn1/d) 

Hence the packet of frequencies corresponding to the pulse will arrive at the output of the fiber sometime 

after the pulse is launched. This delay is the group delay g.  

If the energy propagates a distance L in the fiber, the spread in the arrival times of energy propagating at 

different wavelengths 1 and 2 is,  

m = [L.Ng(1)  L.Ng(2)](1/c) =  [L.Ng(2)  L.Ng(1)](1/c)  

       =  (L/c).(dNg/d). =  (L/c).[(dn/d)  (d
2
n/d

2
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       =  + (L/c).(d
2
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2
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m  =  (L/c).[0
2 

(d
2
n/d

2
)].(/) 

If 0
 
= 820 nm,  = 1 nm i.e. / = 0.12% 

It can be shown that pulse broadening in 1Km fiber due to these chromatic dispersion ~ 100 ps. 

 

Condition for Zero dispersion is, 0
2 

(d
2
n/d

2
) = 0(dNg/d) = 0 

 

 

 



 

 
 

 



 
In single mode fiber, about 20% energy travels in the cladding. This signal will have a different velocity 

than the signal travels in the core because n2 < n1. This phenomena pave way to waveguide dispersion. This 

dispersion will be dominant in single mode fibers and not significant in multimode fibers. 

 

Waveguide dispersion depends upon the fiber design. The propagation constant is a function of the ratio of 

fiber dimension (i.e. core radius) to the  wavelength or a/.   

 

 



1. The waveguide dispersion is usually negative for a given single-mode fiber. The magnitude increases with 

increase in wavelength. It is usually caused by the difference of refractive index of refraction between 

core and cladding, resulting in a “drag” effect between the core and cladding portions of the power. 

 

2. If the core radius a (of a single-mode fiber) is made smaller and the value of Δ is made larger, the 

magnitude of the waveguide dispersion increases. Thus we can tailor the waveguide dispersion by 

changing the refractive index profile. 

 

3.  Waveguide dispersion is significant only in fibers carrying 5 to 10 modes. Since multimode optical fibers 

carry hundreds of modes, they will not have observable waveguide dispersion. 

 

It can be shown that, 

 
Where Dw is a dimensionless dispersion coefficient which is a function of V number of the fiber. 

 
 

Delay Distortion in a Step Index Multimode Optical Fiber: 

 

What we are concerned with is Inter-Modal dispersion which is caused by the different group delays of the 

modes. Since now many modes are present so instead of propagation constant k we will use  which is 

component of k in propagation direction (z). We know that,  

 = [k1
2
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2
]
1/2

 = [n1
2
k0

2
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2
]
1/2

    where k0= 2/0  and k1= n1k0 

Hence Group delay for propagation of distance L in fiber is, 

 g = L.d/d = L.(d/dk0).(dk0/d) = (L/c).(d/dk0)          

Again, V = a.k0(n1
2
n2

2
)
1/2 

  

         dV/dk0 = a.(n1
2
n2

2
)
1/2

 = V/k0
 
  

g= (L/c).(d/dk0) = (L/c).(d/dV).(dV/dk0) = (L/c)(V/k0).(d/dV)  

 



A normalised propagation constant is defined as, 

b = (a)
2
/V

2
  where  [2

  k2
2
]
1/2

  

 

For weakly guiding fibers    (n1 n2)/n1« 1. 

 

Hence, V  a.k0.n2.(2)
1/2 

 And      ~ Vb/a = k0.n2.(2b)
1/2 

 

 

 = [n2
2
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2
+

2
]

1/2
= [n2

2
k0

2
(1+2b)]

1/2 
 n2k0(1+b) 

 g = (L/c).(d/dk0) = (L/c).[d{n2k0(1+b)}/dk0] 

          = (L/c).d(n2k0)/dk0 + (L/c).[d(n2k0b)/dV].[dV/dk0]  

          = (L/c).d(n2k0)/dk0 + (L/c).[d(n2k0b)/dV].[V/k0] 

          = m + w   

        = Material dispersion + Waveguide delay 

 

However, it must be noted that depending on transmission wavelength the sign of material dispersion and 

waveguide dispersion can have opposite sign.   

 
 

 

(D = Dmat + Dwg) 



 
 

 
It can be shown that, the r.m.s broadening of the pulse is: 

s|step =  

   
      

 
 =  

   
 (NA)2   

    
   (2)  

 

To appreciate the impact of this differential delay, let us assume that a pulse of nominal width T is launched 

into the fiber. If the differential delay is equal to the pulse width, the output consists of two pulses occupying 

a total width of 2T as shown.  

 
The receiver will therefore detect two pulses when only one was sent. This effect is called the intermodal 

dispersion of the fiber, and it is an additional dispersion imparted on the pulse.  

 

To appreciate the quantities involved, consider a multimode step index fiber of 10 km length with a core 

refractive index of 1.5 and  = 2%. Then from equation (2) the r.m.s. pulse broadening is, 

s|step =  

   
      

 
 =  

   
 0.02 

          

         
  = 2.88x10

2
 
  

 
 x 10 x 10

3
m = 288 ns.        (3) 



The maximum transmission bitrate in terms of the pulse r.m.s. width is given by, 

                                                         (4) 

Therefore, for s=  = 288 ns, the maximum bitrate is 868 Kbit/s, which is not a useful value for most 

modern applications. 

 

The key question now is whether the differential delay for a multimode fiber can be improved. The reason 

the differential delay between the axial mode and the extreme meridional mode is high is that the 

meridional mode has to reach the boundary between core and cladding before it is reflected back into the 

core. If the flight time of a meridional mode is reduced, then the differential delay will also be reduced. This 

can be achieved with the use of graded index fiber. 

The general equation for the variation of refractive index with radial distance is, 

 
where  is the relative refractive index difference, r is the axial distance, and a is the profile parameter that 

gives the refractive index profile. Figure below illustrates the fiber refractive index for various values of the 

profile parameter a. The step index profile is obtained by setting a=∞. 

 
Fiber refractive index for different values of the profile parameter a. 

 

The improvement in differential delay can be observed by considering the modes of a multimode fiber with 

the profile parameter a set to 2. Two effects may be observed. First, the axial mode propagates through the 

section of the fiber core where the refractive index has its maximum value, which implies that the axial 

mode is slowed down. The meridional modes are bent toward the axis of the fiber, reducing their flight time. 

Together these two effects reduce the differential delay. 

 
 

If electromagnetic theory is employed to analyze the differential delay, the value obtained is, 

s|graded =   
 

    
 

 = s|step 
 

 
                   (6) 

  

The implication of this equation is to highlight the fact that the reduction of the differential delay for step 

index fiber is /8. The r.m.s. pulse broadening is now given by, 

s|index =  

   
     

 
  

 

  
 = s|step  

 

  
        (7) 



and there is a /10 reduction in the r.m.s. pulse broadening. It is now straightforward to compare the r.m.s. 

pulse broadening for step and graded index fibers. From the example studied before, we have a 10 km 

graded index fiber with a core refractive index of 1.5 and  = 2%.  

s|index = s|step  
 

  
 = 288 ns x 

    

  
 = 0.576 ns 

and the maximum bitrate that can be used with this graded index fiber is now 434 Mbit/s! 

 

Comparing the r.m.s. pulse broadening of the two fibers for a length of 1 km, one obtains, 

 

     σs step = 28.8ns/km     and      σs graded = 0.057ns/km 
 

Because of its substantially improved performance, graded index multimode fiber is the clear choice when 

one wants to exploit the advantages of the multimode fiber with low intermodal dispersion. 

 

To summarise, dispersion can be reduced in the following ways: 
1. Single mode fibers eliminate modal dispersion. 

2. Operation at 0 (zero dispersion wavelength) eliminates material dispersion at the single 0 but not over 

the complete spectrum. 

3. For  > 0, the zero dispersion  can be shifted to longer wavelength by matching Dw by +Dm at that . 

4. By using a complex refractive index profile, a low total dispersion over a wide range of wavelength is 

possible. 

 

To analyse beam propagation in graded index fiber: 
Some assumptions are required to be considered: 

1. The refractive index profile is circularly symmetric. 

      2.   The fiber is a multimode fiber with a large core diameter such that a > 50 m. 

3. The total index change within guiding core region is small (<<1) so that the modes can be 

considered transverse electromagnetic. 

4. Index variations are very small over distances of a wavelength so that the conditions of geometric 

optics apply. 

 

With the help of these assumptions, we solve, 

 

 

 

 

It can be shown that for a propagating mode to exist in a graded index fiber, 

 

                      
2
  
 

  
   0     and   k

2
(r)  

2 
 
 

  
   0           (8) 

 

Here propagation constant k has now become a function of r as we are considering graded index fiber. 

 

 

0
11 2

2

2

22

2













E

E

r

E

r

E
z

z

r

z

r

z 




 
 

For  value fixed and  increases, the region between the two CAUSTICS becomes narrower. As  is 

increased further, a point will be reached where the CAUSTICS merge. Beyond this point the wave is no 

longer bound. Thus propagation conditions of a wave depend on the values of both  and . And what we 

get are hybrid modes as shown: 

 

 

 



Source coupling into an optical fiber: 
If PF  Power injected into the fiber  

    PS  Output power of the source 

    C  Coupling efficiency of a source into an optical fiber 

         = 
  

  
 

 C depends on:  

(i) Unintercepted illumination loss 
a) Area mismatch between source spot size & fiber core area 

b) Misalignment of source and fiber axes  

(ii) Numerical aperture loss 
Caused by that part of the source emission profile, that radiates outside of the fiber‟s acceptance angle.  

 

 
Surface emitting LEDs have a Lambartian output pattern 

 

Far field radiation pattern of 

Injection Laser Diode (ILD) 

 
 

 



We consider: 

1. Multimode graded index fiber. 

2. The source (LED) has Lambartian profile. 

3. The source is in direct contact with the fiber core covering the latter‟s entire cross-section. 

 
 

Each element dA radiates amount of power P in the  direction as, 

               P = B Cos dA d                  (1) 

BCos  the brightness of the Lambartian radiation 

      d  element of solid angle = Sin d d 

      dA  element of surface area = r dr d 

Due to numerical aperture mismatch, not all the radiation will enter inside the fiber. The source angles that 

are too steep to be trapped inside will go to cladding. The trapping angle of the energy from the source into 

the fiber at each position r in the fiber core is obtained if we consider the ray angle (i.e. energy propagation 

direction) associated with a given mode at cut-off. 

 

 



 
 

 
 

 
 



Fiber Optic Loss Calculations: 

Loss = 
    

   
 = 

                        

                                          
 (8.1)  

Fiber optic loss is typically expressed in terms of decibels (dB) 

                           Loss|dB = 10 log 
    

   
                       (8.2a) 

The loss is also expressed in terms of dB/km. 

 

 
 
The performance of a digital lightwave system is characterized through the biterror rate (BER). It is 

customary to define the BER as the average probability of incorrect bit identification. Therefore, BER ~ 

10
6

  on average 1 error per million bits. Most lightwave systems specify a BER ~ 10
9

 as the operating 

requirement; some even need a BER ~ 10
14

. The error-correction codes are sometimes used to improve the 

raw BER of a lightwave system. An important parameter for any receiver is the receiver sensitivity. It is 

usually defined as the minimum average optical power required to realize a BER of 10
−9

. Receiver 

sensitivity depends on the signal to noise ratio (SNR), which in turn depends on various noise sources that 

corrupt the signal received. Even for a perfect receiver, some noise is introduced by the process of photo-

detection itself which is the quantum noise or the shot noise, as it has its origin in the particle nature of 

electrons.  
 

The decision circuit compares the sampled value with a threshold value ID and calls it bit 1 if I>ID or bit 0 if 

I<ID. An error occurs if I<ID for bit 1 because of receiver noise. An error also occurs if I>ID for bit 0. Both 

sources of errors can be included by defining the error probability as 

    BER = p(1)P(0/1)+ p(0)P(1/0) 

where p(1) & p(0) are the probabilities of receiving bits 1 and 0, respectively, P(0/1) is the probability of 

deciding 0 when 1 is received, and P(1/0) is the probability of deciding 1 when 0 is received. Since 1 and 0 

bits are equally likely to occur, p(1)=p(0)=1/2 and the BER becomes 

BER = [P(0/1)+ P(1/0)]   



Fig 1(b) below shows how P(0/1) & P(1/0) depend on the probability den-sity function p(I) of the sampled 

value I. The functional form of p(I) depends on the statistics of noise sources responsible for current 

fluctuations. 

 

 
 

 
 



 

 
Multiplexing: 

 

 

 



 
 

 
 

 
 

 

 

 



 

 
 

 



EVANESCENT WAVE (The concept is required for Directional Couplers): 

 

    
 

Although due to total internal reflection, the entire energy is reflected back, there is power flowing in the 

second medium (with r.i. n2). Physically we can understand this by considering the incidence of a spatially 

bound beam at the interface (fig next). As shown, the beam undergoes a lateral shift. This can be interpreted 

as the beam entering the rarer medium and reemerging from the rarer medium after reflection. This shift is 

known as the Goos-Hanchen shift. It is now physically obvious that if, instead of a spatially bounded beam, 

we have an infinitely extended plane wave incident on the interface then although the reflection is complete, 

energy will flow along the z-axis in the rarer medium, the magnitude of this energy decays along x-axis. 

 

It was first studied in detail by none other than the great Sir Isaac Newton, who used a prism to study the 

effect. An illustration of how this might have worked is shown below. 

 

 
 

The thickness of the rays is supposed to indicate their brightness.  In the normal reflection case, part of the 

light gets reflected, part gets transmitted.  In the total internal reflection case, all gets reflected. But Newton 

noticed something else — when a second prism is brought really close and parallel to the first one, light 

starts to get transmitted again! 

 

 
 

n1 > n2 x 

z 

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Isaac_Newton
https://skullsinthestars.com/2016/02/11/hilda-hanchen-and-the-goos-hanchen-effect/totalinternalprism-2/
https://skullsinthestars.com/2016/02/11/hilda-hanchen-and-the-goos-hanchen-effect/frustratedtotalinternal/


This process, known as frustrated total internal reflection (FTIR), only occurs when the second prism is 

brought within a distance comparable to the wavelength of the light being used.  In the case of visible 

light, this wavelength is about 0.0005 mm or 500 nm, a very small number! 

 

If one looks at the images that have been drawn of total internal reflection above, it have been shown the 

reflected ray bouncing off of the glass at the same point where the incident ray hits.  However, when one 

does a rigorous theoretical analysis of the reflection, one finds that the picture should really look as follows. 

 

 
 

A beam of light, reflected off of a surface in total internal reflection, ends up being reflected from a point 

further along than where the incident field hits! This is the Goos-Hänchen shift.  F. Goos and H. Hänchen 

reported the definitive experimental observation of this effect in their 1947 paper, “Ein neuer und 

fundamentaler Versuch zur Totalreflexion,” or “A new and fundamental test for total reflection.” 

 

 
 

Dashed line in the figure shows in a very symbolic way the direction of propagation of the evanescent wave.  

 

The hypothesis is that the light, instead of immediately reflecting at the surface of the glass, instead converts 

to an evanescent wave and “creeps” along the outer surface before becoming a reflected wave. Because 

evanescent waves only exist in the case of total internal reflection, this seemed like a plausible explanation. 

 

2x2 or Four Port Directional Coupler: 
 

 
 

https://skullsinthestars.com/2016/02/11/hilda-hanchen-and-the-goos-hanchen-effect/gooshanchen/
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Nonlinear Optics:  

(Discussion will be limited to effects due to (2) only): 

 

The impact of NLO on science:  
  
 Optical nonlinearities: Crystals, amorphous materials, polymers, liquid crystals, semiconductors, 

organics, liquids, gases and plasmas.  

 OPO:  Extends tunability to a large extent. 

 THz Generation. 

 SRS can turn silicon into an emitter, when pumped external to the silicon chip. Japanese researchers 

have recently reported μW-threshold Raman lasers in silicon with μm-scale geometry. 

 Ultra short pulse generation & Solitons. 

 Recently, ps and fs pulses have been used for laser machining since the ablation and hole-digging 

process can be very clean owing to elimination of thermal effects that cause microcracks and molten 

debris.  

 

Apart from different spectroscopic applications widely tunable coherent radiation have many other uses. For 

example, drinking water can be disinfected from bacteria and protozoan by causing permanent damage to 

their DNA through irradiation of ultraviolet (UV) radiation. Furthermore, doze of UV intensity as high as 

16000 W.s/cm
2
 may be needed for total destruction of some protozoan cysts like giardia. Except excimer 

lasers, there is no such high power UV lasers. However, excimer lasers have limited life and they are also 

quite hard to operate.  

Again most of the trace atmospheric constituents of environmental interest have their fingerprints in the 

infrared (IR) region. And coherent radiation at both the atmospheric window regions, namely 3-5 µm and 8-

12 µm, are widely used for spectroscopic analysis of such trace gases.  

 

 
 

 



 
 

One of the very important gifts of Nonlinear Optics is the Frequency Conversion Technique to expand the 

usefulness of the existing lasers by covering the gaps within the offered tunability. 

 

 
 



 
 

 

Introduction: 

Nonlinear optical devices are based on the nonlinear response of the dielectric material polarization to an 

applied strong electro-magnetic field. The dielectric material polarization P is defined as the induced dipole 

moment per unit volume. According to the classical model of Lorentz, due to an applied electro-magnetic 

(EM) filed E in a material, P will be given by, 

                                                              P = o
(1)

E                                                              (1) 

with the linear susceptibility 
(1)

. When the applied field is so intense that it is of the same order of 

magnitude as the interatomic fields, the electrons start anharmonic oscillations and the anharmonic terms 

will appear in the induced polarization of the material as. 

                                            Ptotal = o (
(1)

E + 
(2)

E
2
 + 

(3)
E

3 
+ 

(4)
E

4 
+ ….. )           (2) 

where 
(1)

E>> 
(2)

E
2
 >>

(3)
E

3
 and so on. In this article, we will consider the effects of the first nonlinear 

component of the polarization only which is, 

                                                      P
(2)

NL = o 
(2)

E
2
 = 2d o E

2
                                       (3) 

Consider e:g:, two traveling waves Є1 and Є2: given as, 

                                                         Є1(z,t) = Є1cos(1t + k1z)                                     (4) 

                                                        Є2(z,t) = Є2cos(2t + k2z)                                      (5) 

When substituted in eq. 3, their interaction will result in the following nonlinear polarization: 

                         P
(2)

NL= 2d o [Є1
2
cos(1t + k1z) + Є2

2
cos(2t + k2z)  

                                                   + 2 Є1 Є2cos(1t + k1z) cos(2t + k2z)]                     (6) 



From eq. 6 it can be seen that the first order nonlinear polarization contains components with various 

combination frequencies: 

                                                          P21= 2d o Є1
2
cos2(1t + k1z)                            (7) 

                                                          P22= 2d o Є2
2
cos2(2t + k2z)                            (8) 

                                          P1+2= 2d o Є1 Є2cos{(1 + 2)t + (k1+ k2 )z}                 (9)    

                                        P12= 2d o Є1 Є2cos{(1  2)t + (k1  k2 )z}                (10)    

The second harmonics of both waves, as well as sum and difference frequency terms result along with a DC 

term as well.  

From eq. 2 it is clear that: 

                          Ptotal = o ( 
(1)

E  
(2)

EE  
(3)

EEE  
(4)

EEEE  …)     (11) 

The symmetry operator Iop gives:  IopP =  P and  IopE =  E and applying it eq. 2 gives: 

          IopPtotal =  P = o ( 
(1)

E + 
(2)

EE  
(3)

EEE
 
+ 

(4)
EEEE+ …..)          (12) 

Comparing eq.11 with eq.12 shows that consistency only exists for 
(2)

EE =  
(2)

EE, hence, 
(2)

 must be 

zero. Thus, in all media with inversion symmetry have 
(2)

 = 0. So in order to realize the 
(2) 

effects, the 

crystal must have to be noncentrosymmetric. 

The nonlinear susceptibility is defined to be 
(2)

 = 2dijk. The susceptibility ijk
 
and nonlinear coefficient 

dijk are tensors; the index i can have the values 1,2 or 3 corresponding the respective crystal axes x, y or z 

and jk can have the values jk = 1; 2; 3; 4; 5 or 6 corresponding to the combinations of axes xx, xy = yx, xz = 

zx, yy, yz = zy and zz. For instance, for the term d31 the polarization of the pump wave is along the z-axis, 

the polarizations of the generated waves are along the x-axis. 

 

Anharmonic Oscillator: 

The equation of motion for an anharmonic oscillator can be written as, 

                                          d
2
r∕dt

2 
+ 2 dr∕dt + o

2
r  r

2
=  (e∕m)E                       (13) 

Equation 13 does not have a simple exact solution because of the anharmonic term (r
2
). The anharmonic 

contribution is usually small, so a solution in the form of a power series: 

                                                          rj = ajE
j
                                                            (14)   

where j is 1,2,3,4,..... can be tried. Substituting in eq. 13 and collecting terms of  same order,                                       

                                        d
2
r1∕dt

2 
+ 2 dr1∕dt + o

2
r1 =  (e∕m)E                             (15) 

                                       d
2
r2∕dt

2 
+ 2 dr2∕dt + o

2
r2 = r1

2 
                                     (16) 

From eq. 16, it follows that the nonlinearity is r2 = a2E
2
, which corresponds to the first nonlinear term in 

the polarization (eq. 2). When higher-order terms of r are also taken into account, it is found that they 

contribute to higher-order nonlinearities. 

 

 
 



Anisotropy: 
 

The natural frequency o and the refractive index of a material are influenced by the interaction between 

the atoms constituting the medium. For isotropic medium an applied electric field Ex generates a dielectric 

displacement Dx lying only along x direction i.e. Dy = 0 = Dz. The dielectric constant D in anisotropic 

materials is a second-rank tensor i.e. in such a medium Ex will in general generate a dielectric displacement 

having all three components. 

                                          Dx= xxEx   Dy= yxEx    Dz= zxEx                                (17) 

And thus , the dielectric permittivity of the medium, is now a tensor. It can be shown that kl (where 

both k & l run over x,y,z) is a symmetric tensor with 6 (xx,yy,zz,yz,xz,xy) independent components. 

Considering principal dielectric axes, 

  

 

 

x, y, z are principal dielectric permittivities.  

  x = y = z     Isotropic ;   x = y  z   Uniaxial ;  x  y  z   Biaxial 

And finally, (/0)
½
 = [1+ 

(1)
]

½
 = n (refractive index) 

 

Walk-off or Double Refraction: 
 

In birefringent media, the direction of wave propagation (direction of k) for an extraordinary („e‟) wave 

is seen to “walk-off” the axis of the ordinary („o‟) beam  (fig.1).  

 

 

 

 

 

 

 

Fig. 1. The angle () between k and S. H is perpendicular to the figure. 

From Maxwell‟s Equations, 

                                                                                          

 

                                                                                                                                 (18 a,b,c) 

 

We have considered the transmission of a monochromatic plane wave through an anisotropic crystal and 

the traveling wave has the e
i(t  kz)

 dependence. For such wave we can replace the operator  by (ik) and 

/t by i. From eq. 18(a), H is perpendicular to E and k, while from eq. 18(b), D is perpendicular to H and 
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k. Thus D, k, E and S [from eq. 18(c)], are all in a plane perpendicular to H. The angle between k and S is 

called walk-off angle  and for uniaxial crystal for wave vector propagation in xz plane at an angle  with 

respect to the optic axis (z direction in fig. 1) can be expressed as: 

 

                                                                                                                                                      (19) 

 

For noncritical angle i.e. when  = 90,  becomes zero. For a beam of constant radius w, „o‟ and „e‟ 

beams become physically separated in a distance, 

                                                L = 2w/tan  2w/                                          (20) 

As an example, for a beam diameter of 1 mm and  = 2, this distance is approximately 3 cm. Beams 

that do not physically overlap cannot interact. So the walk-off effect is a serious detriment to frequency 

conversion efficiency. 

 

Symmetry Considerations for (2): 
 

It can be seen that ijk will have 81 different independent components. Fortunately there are two 

important symmetry conditions that help to reduce the number considerably. 

 

A. Overall Permutation Symmetry: 

                       ijk(1, 2, 3)  

                                 = jki( 2,3,1)  

                                          = kij (3, 1, 2)                                                 (21) 

 

The frequencies may be freely permuted, provided the Cartesian indices i, j and k are permuted with the 

frequencies. This reduces the number of components to 27 from 81. 

      
 B. Kleinman’s Conjecture: 

                               ijk= jki = kij                                                                       (22)                                                                 

 
This last symmetry condition is valid only when all the three interacting frequencies are within the transmission 

region (without any cut-off) of the nonlinear medium being considered. 

 

 

Coupled Amplitude Equations: 
 

Considering: 

 1. Ei(z,t) = Ei(z )exp[ i(it  kiz)] + c.c. 

 2. P1(z,t) = 20d E2*(z)E3(z) . exp[ i{(3  2)t  (k3  k2)z}] 

 3. D = 0 [1+ (1)]E = E + PNL 

 4.  = 0 (nonmagnetic) &  = 0 (charge-free) 
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 5. 
2Ei  0

2Eit
2 = 0

2PNLt
2  

 6. SLOWLY-VARYING AMPLITUDE APPROXIMATION: 

   The distance over which dE/dz changes appreciably is large compared to the wavelength so that, 

               dE/dZ » d
2
E/dz

2
  

One gets, 

 

 

 

 

                                                                                                                   23 (a,b,c) 

 

These are the three coupled amplitude equations showing mutual dependency of power between the 

interacting frequencies. For small signal approximations i.e. when there is no pump depletion then,  

 

                                                                                                                         (24)               

                                                                                                                         (25) 

 

 
One obtains the following expression for the intensity of the generated frequency as, 

 

 

                                                                                                                         (26) 

 

 

Where P1 and P2 are the power of the input frequencies 1 and 2; A1 and A2 are the area of the input beams; ni‟s are 

refractive indices of  i‟s; L is the crystal length and k is the phase-mismatch parameter. The above eq. (26) clearly 

shows the dependence of intensity (I3 = P3∕A3) of the generated radiation on different parameters of the nonlinear 

crystal, like its nonlinear coefficient, length, refractive indices etc. It also shows that I3 is proportional to the product 

of the intensities (I1 and I2) of the parent input beams. 

 
Manley-Rowe Relations: 
 

From the coupled amplitude equations 23 (a,b,c) given above,  multiplying both sides by 0Ei*(z)/2, 

   (½1)0n1cEi*(z)[dEi(z)/dz] = (0id/2)Ei*(z) Ej*(z) Ek(z) 

 

& remembering, 

 d(EiEi*)/dz = (2/0nic) [d(Pi/Ai)/dz] 

One gets, 

                                                                                                                                     (27) 
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i.e. 

    (Change in intensity at 1)/1 

             = (Change in intensity at 2)/2  

                 =  (Change in intensity at 3)/3                                                                     (28) 

 

This is the famous Manley-Rowe relation. The „‟ sign in the last one is very important. 

Consequences: 

     For SFM [3 = 1 + 2] both lasers (1 & 2) will loose power which is gained by the generated beam 

(3). 

      For DFM [1 = 3  2] source laser at 3 will loose power not only to the generated beam (1) but also 

to the other source (2). This is the significance of the „‟ sign in last one. 

 
Phase-Matching: 
 

It refers to the tendency, when propagating through a nonlinear medium, of the generated wave to 

become out of phase with the induced polarization after some distance. It involves precise control of the 

indices of the three frequencies involved in the mixing process to match the velocities of propagation of the 

polarization waves and the electromagnetic wave which they generate. It can be seen that the generated 

signal is 90 out of phase with the polarization wave when k = 0. It can be shown that this makes it 

possible to couple the energy from the polarization wave into the generated wave. But for k0 this 

favorable condition exists only at L = 0 and after one coherence length (Lc = /k) the phase of the signal 

will change exactly by 90. Thus power flow changes sign. So if L = 2Lc no generation will occur.  

One of the most important ways to achieve phase-matching is to compensate the dispersion of the 

nonlinear crystal by its birefringence. And too small birefringence will not be able to make such 

compensation as shown in fig. 2 and hence will not allow this angle phase-matching.  

 

Fig. 2 The nonlinear crystal must have adequate birefringence to compensate its dispersion. 

 

In fig. 3 below it can be seen that in the given negative uniaxial nonlinear medium one can achieve the 

SHG of 1064 nm radiation, by equating the phase-velocities of „o‟ polarized 1064 nm beam and that of the 
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„e‟ polarized 532 nm beam by rotation of wave propagation angle θ which the interacting beams make with 

the crystal optic axis inside the crystal. And since, 

 

                                                                                                                                                     29(a,b) 

 

hence the phase-matching (PM) condition for above interaction will be,  

                                                         n1
o 
= n2

e
(θ)                                                (30)              

However if the condition be such that n1
o 

= n2
e
 then the phase-matching angle θ will be 90 as is the case 

shown for second harmonic generation of 532 nm in Fig. 3. In such case the interaction is said to be non-

critically phase-matched. SHG of 532 nm is obviously fourth harmonic of 1064 nm and hence it is denoted 

as FHG in the figure.  

 

 

 

 

 

 

 

 

Fig. 3. Angle phase matching for SHG. 

 
PM Conditions for negative uniaxial crystals: 

 For sum frequency generation SFG: (1/1 + 1/2 = 1/3)          1>2> 3  

  Type-I            Type-IIA           Type-IIB  

      ooe                   eoe                      oee                                     (31a,b,c) 

  

For difference frequency generation DFG: (1/1  1/2 = 1/3)   1<2< 3  

 Type-I            Type-IIA           Type-IIB  

      eoo                   eoe                      eeo                                    (32a,b,c) 

 

For positive uniaxial crystal the conditions can be obtained simply by changing the ordinary 

polarization by extraordinary and vice-versa. For example, for SFG, the conditions will be eeo, oeo and eoo 

respectively for Type-I, Type-IIA and Type-IIB. 

 

Critical issues of Material Selection: 
 

1. Nonlinear coefficient must be high. 

2. Higher damage threshold is always an important advantage for improving conversion efficiency.  
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3. The crystal should have enough birefringence to allow phase-matching for different interactions. 

4. The crystal should have large transparency range. 

5. The crystal length is an important parameter as the conversion efficiency increases by L
2
. So it is 

important that the crystal can be available in large size. 

6. Stability is very important since if the crystal is hygroscopic then its polished surfaces will easily 

become opaque and thus it cannot be used. Of course thermal ovens can be used to tackle such problems, 

but it will mean additional cost and extra care. 

7. Optical homogeneity of the crystal is very essential for getting high conversion efficiency. 

For example, detailed characteristics of some important UV-VIS-NIR and IR nonlinear crystals are 

respectively given in Table-1 and Table-2.  

 

Assessments of Nonlinear Materials: 

S. K. Kurtz‟s powder method, demonstrated in 1968, represents the first real means of screening, 

experimentally, large numbers of unknown materials for nonlinear activity, without having to perform the 

slow and expensive task of growing good quality crystals of each material. Kurtz showed that it is possible 

by measurements on powders, to ascertain whether a crystal has large or small nonlinearity and whether it 

can be phase-matched. 

 
 
 

 
 
 
 
 
 
 
 

                              (i)                                                                (ii) 
 

Fig. 4. (i) Schematic set up of Kurtz powder method and (ii) the typical response of SHG with particle size 

of powders of phase-matchable and non-phase-matchable crystals. 

 

In brief, in the experiment the sample is first grinded such that one can obtain several powdered forms. 

While each powder consists of a uniform particle size, but particle sizes are in increasing order of magnitude 

in different powders.  Each powdered sample is taken on a glass slide and positioned as shown in the figure 

inside the chamber having parabolic reflector. For each sample, the SHG will increase till r/Lc = 1 where r is 

the radius of the particle in the sample being examined. However, when r>Lc, if the crystal is not phase-

matchable, then the SHG starts to decrease. However, if the crystal is phase-matchable then, the generation 

will ultimately saturate as an increase in r will decrease the number of particles in the fixed place. In this 

way using only powdered form of a sample, one can easily ascertain whether the crystal is suitable for 

nonlinear frequency conversion devices or not. 
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1064 nm

Quartz

Reference
Parabolic

Reflector

Filter

PMT

Pre-

amplifier

Oscilloscope

PHASE-MATCHABLE

NOT PHASE-MATCHABLE

r/l
coh

0 1 5

1.0

0.5

I
2

(a.u.)

11

l
coh

 = c/[{n(2)-n()}]



 

Table-1. Characteristics of some UV-VIS-NIR crystals: 
 

Crystal 
(Point Group) 

Transmission 

(m) 

Birefringence Nonlinearity 
d x 10-12 (M/V) 

Surface Damage 
Threshold (MW/cm2) 

KDP [ ] 
0.21.55  0.04 0.38 1000 

DKDP [ ] 
0.22.15  0.04 0.38 1000 

BBO (3m) 0.189  3.5  0.11 2.2 13500 

LBO (mm2) 0.16  2.6  0.05 1.4 27000 

CLBO [ ] 
0.18 2.75  0.47 1.0 29000 

LB4 (4mm) 0.16  3.5  0.055 0.15 40000 

KTP (mm2) 0.35  4.5 + 0.09 3 500 

KTA (mm2) 0.35  5.2 + 0.08 3 500 

LiNbO3 (3m) 0.33  5.5  0.08 4.7 50 

LiIO3 (6) 0.3  6.0  0.14 4.1 125 

 
 
 
 

Table-2. Characteristics of some IR crystals: 

 

Material AgGaS2 AgGaSe2 ZnGeP2 GaSe CdGeAs2 HgGa2S4 AgGaxIn1-xSe2 Tl3AsSe3 

d coeff. 
(pm/V) 

12 33 75 54 236 35 36 
(x = 0.58) 

20 

Trans-
parency 

(m) 

0.50 

 13.2 

0.76 

 18.0 

0.72 

 12.3 

0.65 

 18.0 

2.60 

 17.8 

0.50 

 14.3 

0.8 

 18.0 

1.3 0 

 17.0 

Birefrin 
-gence 

 0.053  0.033  0.039 0.373  0.096  0.04  0.018  0.18 

dB/dT 
X 10-5 

0.178 0.26 1.3 15.0 0.23   8.4 

Thermal 
Conduc 
-tivity 
(W/cmK) 

 
0.015 

 
0.011 

 
0.36 

 
0.162 

 
0.042 

 
0.039 

 
0.011 

 
0.0035 

Laser  
Damage 
Threshold 

0.25 
J/cm2 

0.53 
J/cm2 

310 
J/cm2 

3 
J/cm2 

2040 
MW/cm2 

60 
MW/cm2 

40 
MW/cm2 

35 
MW/cm2 

Shortest 

Pump   

0.6 

m 

1.27 

m 

1.7 

m 

0.7 

m 

2.7 

m 

0.5 

m 

1.27 

m 

1.35 

m 

 

 

 

 

 

 



 

Optical Paramteric Oscillator: 

 

 

 
 

 
 

 



 

 

 

 
 

An Interesting Result:   

Crystal:  GaSe ( = 0 cut & L = 2 cm) 

1 = 1.064 m; I1 = 17 MW/cm
2
 

2 = 1.094  1.76 m (OPO);  E2 = 5 mJ  (max)  

Pulse Width ~ 5 ns. 

3 = 2.7  38.4 m 

Reference: W. Shi & Y. J. Ding, Appl. Phys. Lett. 84 1635 (2004)      
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