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Abstract

In this pedagogical talk we would like to discuss the
basic science behind nanoscience and
nanotechnology suitable for the yound mind. Several
examples from nature as well as from basic science
will be illustrated. @ The role of basic guantum
mechanics will be highlighted. In the second part,
we would like discuss the intriguing physics of two
dimensional (2D) materials. Dirac materials are a
class of complex and functional nanomaterials
offering great potential in the development of new
electronic components. A tight binding (TB) model
along with density functional theory (DFT) will be
used to unravel the characteristic features of Dirac
points in these systems.



Plan of The Talk

1.A brief history of Nano Science

2.Quantum Mechanics and its application
to Nano Scence

3.DFT Calculations of some 2D
structures

4.Conclusions



Why are there no small animals
In the polar regions?
* Heat Loss oc Surface Area
(L?)

* Mass ocVolume (L3)

 Heat Loss/Mass oc
Area/Volume




Heat LLoss/Mass oc Area/Volume

= L%/ L3
—1-1
Mouse (L = 5 cm) Polar Bear (L =2 m)
1/L = 1/(0.05 m) 1/L=1/(2 m)
=20 m-! =0.5m’!

20:0.5 or 40:1
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Quantum mechanics’ is the description
of the behavior of matter and light in all
its details and, in particular, of the
happenings on an atomic scale. Things on
a very small scale behave like nothing
that you have any direct experience
about. They do not behave like waves,
they do not behave like particles, they do
not behave like clouds, or billiard balls, or
weights on springs, or like anything that
you have ever seen.”

--Richard P. Feynman



Why do we have quantum mechanics?
Particles sometimes behave like waves and vice-versa. This duality is
something that is contrary to conventional classical mechanics. Quite often,
physical phenomena cannot be explained by “classical mechanics’, e.g.
1. The existence of spectral lines
2. Photoelectric effect
3. Particle-wave duality
4. Double-slit experiment
5. Solid-state Physics & the failure of the classical (Drude) model

Spectral lines
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what is an electron?

l.e. particle or wave, both, or neither?

Answer — we don’t know for sure, but if we assume it is a wave (actually a
wave-packet), we will always predict the correct behavior.

If we assume it is a particle, we will sometimes be right, but most of the time
we will be wrong......

Examples: Scanning tunneling microscope images of lron atoms on a copper
Surface. These structures are containing electron waves on the surface.

N.B. These are real images, not simulations!
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There’s Plenty of Room at the Bottom

Kichard P. Feynman

Talk given to the American Physical Society, 1959
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The Very Beginnings...

500 — 1400 — Stained Glass

800 - 1600 — Nanoparticles in pottery
1200 - 1700 — Damascus Steel swords

~1910 — Particle sizes described in
“nanometers”

1959 — Feynman’s speech:

“The principles of physics, as far as | can see, do

things atom by atom”
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Then...

e 1970 - “Nanotechnology” coined (Taniguchi)
e 1981 — First atoms seen (Binnig and Rohrer, STM)

e 1986 — Engines of Creation, the Coming Age of
Nanotechnology by Richard Drexler

“Nanotechnology is the principle of atom manipulation atom by atom,
through control of the structure of matter at the molecular level. It
entails the ability to build molecular systems with atom-by-atom
precision, yielding a variety of nanomachines”



How big is a nanometer?

micro.magnet.fsu.edu/.webloc

Chromosome

50 um
Modern ‘
IC \ G

0.005 pm
=5nm

X 20,000,000 times

How do we see this?: Electron microscope & Scanning-probe microscope




The most famous nanostructure.......DNA

Genes contain
instructions
for making
proteins

B
or in complexe!
perform many cellular
functions

U.S. DEPARTMENT OF ENERGY




The Lycurgus Cup- A Roman Nanotechnology
4th Century AD

In reflection In transmission

Au/Ag nanocrystals (70 nm)










The Scale of Things - Nanometers and More
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Four important ways in which nanoscale
materials may differ from macroscale
materials

Gravitational forces become negligible and electromagnetic
forces dominate

Quantum mechanics is the model used to describe motion and
energy instead of the classical mechanics model

Greater surface area to volume ratios

Random molecular motion becomes more important



Dominance of Electromagnetic
Forces

* Because the mass of nanoscale objects is so
small, gravity becomes negligible

e Gravitational force is a function of
mass and distance and is weak
between (low-mass) nanosized

vF w&
:
- o
et <

particles

 Electromagnetic force being a
function of charge and distance - is

> o not affected by mass, so it can be
e & very strong even when we have
? 9 - o nanosized particles

* The electromagnetic force between
two protons is 103 times stronger
than the gravitational force!



Nanoscience IS where atomic physics converges with the physics
and chemistry of complex systems.

Quantum Mechanics Statistical Mechanics

Quantum Mechanics dominates the world of atoms, but typical
nanosystems may contain from hundreds to tens of thousands
atoms.

Emergent behavior

How much a system is quantum mechanical?



The properties of materials can be different at the Nanoscale for two main reasons:

First, Nanomaterials have a relatively larger surface area when compared to the
same mass of material produced in a larger form.

Nano particles can make materials more chemically reactive and affect their strength
or electrical properties.

Second, quantum effects can begin to dominate the behaviour of matter at the
Nanoscale

Nanoscale materials are divided into three category,

1. Zero dimension — length , breadth and heights are confined at single
point. (for example, Nano dots)

2. One dimension — It has only one parameter either length (or) breadth
(or) height ( example:very thin surface coatings)

3. Two dimensions- it has only length and breadth (for example,
nanowires and nanotubes)

4. Three dimensions -it has all parameter of length, breadth and height.
(for example, Nano Particles).




* In a classical sense, color 1s caused by the partial absorption of
light by electrons in matter, resulting in the visibility of the
complementary part of the Light

* On a smooth metal surface, light 1s totally reflected by the hugh
density of electrons ==> no color, just a mirror-like appearance.

* Small particles absorb, leading to some color. This 1s a size
dependent property.
Example: Gold, which readily forms nanoparticles but not easily

oxidized, exlubits different colors depending on particle size.
- Gold colloids have been used since early days of glass

making to color glasses. Ruby-glass contains finely
dispersed gold-colloads.

- Silver and copper also give attractive colors
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Reflection, leading to scattering, is weak at small sizes and increases when > 50 nm.

100 nm gold particles
Aabs = 575 nm

'\ Color = ptu‘ple-pink

¥
N

20 nm gold particles
Aabs = 521 nm
Color = red

1 nm gold particles
Aabs =420 nm

Color = brown-vellow




Optical Properties Example:
Gold

* Bulk gold appears yellow in color
* Nanosized gold appears red in color

* The particles are so small that electrons are not
free to move about as in bulk gold

®* Because this movement is restricted, the
particles react differently with light

Optical properties are connected with electronic
structure, a change in zone structure leads to a
change in absorption and luminescence spectra.

" 4

“Bulk” gold looks yellow

(="
12 nanometer gold particles look red



Particle in the Infinite Potential Well
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Why are Cherries Red and
Blueberries blue ?



The Colour of Fruit

Let's put in numbers. h = 6.6 % 10-* J-s. The electron mass, m,
= 0.1 % 10~ kg. For the length of the box, let's take L to be

that of a medium-sized molecule, that is, L = 0.8 X 10-? m (0.8
nanometers, 0.8 nm). Then,

3(6.6 X 10-)?

A= 0 TX 107 (08X 107

=2.8%10-1].

This energy corresponds to

h=706x10"m =706 nm s Deep Red Colour

If L=0.7 nm, A=540 nm —— Green Colour
If L=0.6 nm, A=397 nm —— Blue Colour



Quantum tunneling effect

The quantum tunnelling effect allows a
confined particle within a finite potential well

to penetrate through the classically

impenetrable potential wall

Hard
and

high
E wall,

After many many
times of banging
the wall

® ¢
/|\
/T~




Why tunneling phenomena can
happen

It's due to the continuity requirement of the wave function at
the boundaries when solving the T.I.S.E

The wave function cannot just “die off” suddenly at the
boundaries of a finite potential well

The wave function can only diminishes in an exponential
manner which then allow the wave function to extent slightly
beyond the boundaries

A exp(Cx) =0, x<0
(X)) =
A exp(—Cx)#0, x=>L

The quantum tunneling effect is a manifestation of the wave
nature of particle, which is in turns governed by the T.I.S.E.

In classical physics, particles are just particles, hence never
display such tunneling effect



Incident wave

Transmitted wave




Real example of tunneling phenomena:

(a) l

Material

Empty space

(b) W

Material Empty  Probe

\l).l( &

Figure 3 (a) The wavefunction
of an electron in the surface of the
material to be studied. The wave-
function extends beyond the sur-
face into the empty region. (b)
The sharp tip of a conducting
probe is brought close to the sur-
face. The wavefunction of a sur-
face electron penetrates into the
tip, so that the electron can “‘tun-
nel” from surface to tip.

Atomic force microscope

Ammeter

‘ ﬂl/ Bias

? ‘ltzlll;\ voltage

Tunneling
electrons

S.un])h-
atoms

FIGURE A Highly schematic diagram of the scanning
tunneling microscope process. Electrons, represented in
the figure as small dots, tunnel across the gap between
the atoms of the tip and sample. A feedback system

that keeps the tunneling current constant causes the tip

to move up and down tracing out the contours of the
sample atoms.

FIGURE D An atomic force mi('r().s'(-()pv scan of a

stamper used to mold compact disks. The numbers
given are in nm. The bumps on this metallic mold
stamp out 60 nm-deep holes in tracks that are 1.6 um
apart in the optical disks. Photo courtesy of Digital Instru-

ments

32



SUriaCErArEa teNVellme RatioNRErEasES

As surface area to volume ratio -
increases
A greater amount of a
substance comes in contact
Wlth Surroundlng materlal Area =6 x 1m2 = 6 m2 ﬂ.rea=ﬁx(1f2m]2xﬂ=12 m2

This results in better
catalysts, since a greater
proportion of the material
is exposed for potential
reaction

Area = 6 x (177m)Z x 27=18 m?

0.15

Surface Area / unit volume
=
f—t
|

0 100 200 300 400

Particle Size (nm)



What are Quantum Dots?

Quantum dots are semi-
conductors that are on the
nanometer scale.

Obey quantum mechanical
principle of quantum
confinement. -I-

Exhibit energy band gap that
determines required k h,1s

wavelength of radiation ; : = hip

absorption and emission
spectra. Fig. 1. Schematic plot of the single

Requisite absorption and particle energy band gap. The upper
resultant emission wavelengths parabolic band is the conduction band,

: the lower the valence.
dependent on dot size.
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Quantum Confinement

= The reduction in the number of atoms in a material results in
the confinement of normally delocalized energy states.

= Electron-hole pairs become spatially confined when the
diameter of a particle approaches the de Broglie wavelength
of electrons in the conduction band.

= As a result the energy difference between energy bands is
Increased with decreasing particle size.

Energy
N

I ‘
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Direct vs Indirect Band Gap

conduction band

valence band

> k

(a) Direct band gap (b) Indirect band gap
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Si (1.17 eV, 1.14 eV) and Ge (0.74, 0.67 eV) are indirect band gap semiconductor
with minima at X and L point

GaAs (1.52 eV, 1.43 eV) and InAs (0.43 eV, 0.36 eV) are direct bandgap
semiconductors



[t might seem strange then that Siis -
the most widely used semiconductor solar cell. The main reasons behind this are the following:

1. Its band gap is the perfect size to capture the photon distribution that comprise the solar
spectrum.

2. It is abundant in earth (i. e. its availability in large quantities).
3. It is environmentally benign.

4. Most importantly, there is the availability of very good technological assistance for Si-
processing (i.e. its ease of process to produce electronic grade material with high purity).

5. 1t can accept both p and n-type dopants easily.

6. Finally, it is quite easy in producing large wafers in different orientations.
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Energy Level Diagram: Quantum S5ize Effects
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Variation of band gap with crystallite size

The first term 1s the energy expression for quantum localization (justified from uncertainty princi-
ple) and scales as D for electron as well as hole. The second term is the Coulomb attractive interac-

tion, which increases as D", Third term is the salvation energy loss. In large gap polycrystalline
materials having crystallites diameter 30-60A, 1t is seen  that the third term is very negligible
compared to the first and second one, Hence, with reasonably good approximation, the change in band

gap energy AE, s written as
10
AEE:M _1:862
W &0

It is to be noted that the above relation is strictly valid only for 3d direct gap materials.

This renders the shift to blue region of bulk
band gap for nanocrystalline samples



One Dimensional Systems:

High aspect ratio
Enhanced density of states

Single wall carbon nanotubes SWNT: Chirality
and diameter-dependent properties
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(10,10) Nanotube
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Nanotubes’ excellent strength to weight ratio

creates the potential to build an elevator to space.




Graphene vs (scaled down) steel film of the

~ same thickness
| | Take-home message 5

=> Graphene is more than 100 tlmes stronger
 than the strongest steel! |

[Can put a 4Kg mass (e g. a cat) ona 1 m2 graphene (if one can make it).
Cartoon taken from Nobel Prize announcement] - '



0.142 nm

0.123 nr

Name of | L1 Be B C(D1a) | C(Graph
Elements

Atomic 3 4 5 6 6
Number

Y(GPa) 11.5 | 289 | 440 | 1140 8.3
Melting | 181 1277 | 2030 | 3550 3550
Point

(")

Density | 0.531 | 1.85 | 2.34 | 2.25 2.25
(10°

Kgf"1113)

Table 1: Comparison of Various physical

parameters with diamond and graphite




Microscopic Specimen Rﬂ(‘??.l'
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(9.0)
SWCNT

Y (GPa)

(9,0)
SWCNT

o (GPa)

max

Y(T) = dmnU dmnU
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Graphene
‘Carbon has been investigated for more than half a century without exhausting its wonders & challenges’
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Semiconductor Graphene
N=

E=xv.|p

3 “Fermi velocity”

T oy v, =8x10°m/s



Band Structure of Graphene Nanoribbon |
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natureresearch

OPEN The topology and robustness of
two Dirac cones in S-graphene: A
tight binding approach

Arka Bandyopadhyay?, Sujoy Datta?, Debnarayan Jana®®, Subhadip Nath? & Md. Mohi Uddin?




RSRG scheme

F =~ €. (Near Fermilevel)

t% = {1t4 (Holds good)

= —t2/ts = —t1.

t" =%/t




RSRG scheme

 Renormalized lattice is a two level system.

« Uniform hopping in the original lattice leads to uniform hopping in the final
system. There values are same.



Band structure

Energy (eV)

Ei=%471 \/1 + 4 cos?(2mk, ) + 4 cos(2mky) cos(2mky)).
¢z = 27k /a and q, = 27k, /b.




Individual tuning
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Five new carbon 2D structures and their
electronic property:

TPO-graphene Twin T-graphene  TPDH-graphene PHP-graphene Worm-graphene
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PHYSICAL REVIEW B 103, 075137 (2021)

8-16-4 graphyne: Square-lattice two-dimensional nodal line semimetal
with a nontrivial topological Zak index

Arka Bandyopadhyay©,' Arnab Majumdar®.”" Suman Chowdhury ©.* Rajeev Ahuja©,>*" and Debnarayan Jana®'-*
' Department of Physics, University of Calcuita, 92 A P C Road, Kolkata 700009, India
*Department of Physics and Astronomy, Box 516, Uppsala University, Uppsala, SE-75120, Sweden
Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia
4 Department of Materials Science and Engineering, Roval Institute of Technology, Stockholm, SE-10044, Sweden

|@ (Received 25 August 2020; revised 2 February 2021; accepted 3 February 2021; published 22 February 2021)

An unprecedented graphyne allotrope with square symmetry and nodal line semimetallic behavior has been
proposed in the two-dimensional (2D) realm. The emergence of the Dirac loop around the high-symmetry points
in the presence of both the inversion and time-reversal symmetries is a predominant feature of the electronic
band structure of this system. Besides, the structural stability in terms of the dynamic, thermal, and mechanical
properties has been critically established for the system. Following the exact analvitical model based on the real-
space renormalization group scheme and tight-binding approach, we have inferred that the family of 2D nodal
line semimetals with square symmetry can be reduced to a universal four-level system in the low-energy limit.
This renormalized lattice indeed explains the underlying mechanism responsible for the fascinating emergence of
2D square nodal line semimetals. Besides, the analytical form of the generic dispersion relation of these systems
is well supported by our density-functional theory results. Finally, the nontrivial topological properties have been
explored for the predicted system without breaking the inversion and time-reversal symmetry of the lattice. We
have obtained that the edge states are protected by the nonvanishing topological index, 1.e., Zak phase.

DOIL: 10.1103/PhysRevB.103.075137



Interplay between square symmetry and
Dirac fermions
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. The system is also obtained using the
0. evolutionary algorithm USPEX
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Analytical band structure: emergence of nodal ring
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Quantum dots glow in UV light
Injected in mice, collect in tumors
Could locate as few as 10 to 100 cancer cells

Quantum Dots: Nanometer-sized crystals
that contain free electrons and emit
photons when submitted to UV light

Early tumor detection,
studied in mice



Nano shells as Cancer Therapy

Nano shells are injected into cancer area and they recognize cancer cells. Then by
applying near-infrared light, the heat generated by the light-absorbing Nano shells has
successfully killed tumor cells while leaving neighboring cells intact.

Nanoshells as Cancer Therapy

Nanoshells .
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Nanoshelis

Nanoshells kill tumor
cells selectively




Conclusions

- Some Iinteresting uncommon analysis of problems have
been presented via dimensional analysis.

- Quantum mechanics — particle in a box model and tunneling
play an important key role in nano science.

- Surface to volume ratio Is the main factor for surface
reactivty of nanomaterials.

- Enhancement of bandgap in nanomaterials — prime
factor for design of electronic devices
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First we guess it. Then we compuite the consequences of the guess to see
what would be implied if the law we guess is right. Then we compare the
result of the computations to nature, with experiment or experience;
compare it directly with observation, to see if it works. If it disagrees with
experiment it is wrong. In that simple statement is the key to science. It
does not make any difference how beautiful your guess is. It does not
make any difference how smart you are, who made the guess or what
your name is — if it disagrees with experiment it is wrong. That is all
there is to it.

Richard Feynman
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