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PREFACE 

 

 

The Calcutta Institute of Theoretical Physics (CITP) is celebrating the 125th birth anniversary 

of its founder Prof. Kulesh Chandra Kar this year. This institute was set up by Prof. Kar in his 

residence in 1953 to hold meetings and discussions on a regular basis on new and emerging 

topics in physics. These meetings enabled young and aspiring physicists to have a forum 

beyond the daily grind of the regular learning and teaching process which are obviously 

essential for survival. While the disciplined learning process is absolutely necessary, Prof. 

Kar recognized, a century ago, that it is equally vital, equally demanding and in many ways 

immensely fulfilling to have an education beyond the daily grind. Hence the emergence of 

CITP. To celebrate the 125th birth anniversary of its founder, the institute organized a two-day 

event covering essentially all aspects of theoretical physics. The vital role of symmetry in the 

study of almost all physics related issues, the fundamental constituents of matter as envisaged 

by high energy physicists, the intriguing coming together of quantum physics and the 

classical world of gravity, the emergence of quantum computation, the contribution of S N 

Bose to a prediction that had to wait seventy years for experimental confirmation, the ever-

fascinating world of astrophysics and the incredible mixing of biology with physics and 

mathematics formed the framework of a two day celebration. We do hope that the publication 

of the write-ups of the discussion will be enjoyed by those who were not actually present at 

the event. 

 

Prof. Jayanta Kumar Bhattacharjee, 

Director, CITP, Kolkata 

 

 

 

 

 

 

 



 

 

SECRETARY’S REPORT ON THE CONFERENCE 

I am very proud to present  the outcome and results of  2- Day National Conference 

on “Recent Trends in Physics and Mathematics” held during October 22-23, 2024 at 

Presidency University,Kolkata to celebrate 125th Birth Anniversary of Professor Kulesh 

Chandra Kar, an outstanding theoretical physicist and an eminent and dedicated educationist, 

who spent most of his formal working period as a teacher in Presidency College ( now known 

as Presidency University), Kolkata, with some short stints  at Scottish Church College, 

Kolkata and Serampore College and Rajshahi College. In the inaugural session following 

dignitaries were present: 

Prof. N N Chakraborty, Vice-Chancellor, Presidency University, Prof. Ashoke Nath 

Basu, Former Vice-Chancellor, JU, Prof. J K Bhattacharjee, Director, CITP, Dr. P R Ghosh, 

Vice-President, CITP, Prof. Arunava Chakraborty, HOD, Physics, Presidency University. 

This event has attracted 76 student and teacher participants from different Colleges and 

Universities of India. 

The main aim of this conference was to bring together leading academicians, 

researchers, teachers and students to exchange and share their experiences. It was also meant 

to provide the participants with an in-depth understanding of some modern topics of Physics 

and Mathematics.Distinguished scientists of different research institutions of India were 

invited to focus the following modern topics.  

  1. Quantum Gravity - Prof.Soumitra Sengupta, IACS,Kolkta 

  2. Quantum Statistics - Prof.J K Bhattacharjee, IIT, Kanpur 

  3. Foundation of Quantum Mechanics - Prof. Guruprasad Kar, ISI, Kolkata 

  4. High Energy Physics (LHC) - Prof. Satyaki Bhattacharya, SINP, Kolkata 

  5. Solar Magneto-Hydrodynamics - Prof. Arnab Rai Choudhuri, IISc, Bangalore  

  6. Biological Physics - Prof. Indrani Bose, Bose Institute, Kolkata    

 7. Introduction to Divergence Series and its Applications to Physical Problems- Prof. 

Dhiranjan Roy, Ex-Professor, JU, Kolkata 

Keynote lecture was presented by Prof. Parthasarathi Mitra, Ex-Professor, SINP, 

Kolkta, an eminent personality in Particle Physics. Each technical session had a chair, who 

was expert in the domain. Each speaker was given 50 minutes for the presentation, which 



was followed by question and answer session for 5 minutes. The resource persons were 

felicitated with mementos. 

Two-day Conference ended with a valedictory session where renowned teachers, Mr. Partha 

Pratim Roy of South Point High School, Kolkata and Dr. Abhijit Kar Gupta of Panshkura 

Banamali  College were invited to discuss “ Science Education: past and present”. Prof. 

Arunava Chakraborty, HOD, Physics of Presidency University chaired this session. Active 

participation of the audience, particularly students in the interactive session was remarkable. 

It was announced that lectures presented in the conference and seminar organised by CITP 

this year would be published in a special   Volume of Indian Journal of Theoretical Physics 

(Free access). This volume will be uploaded to our website: www.citphy.org.  In the first 

issue of this we have planned to publish two articles: 

1. Introduction to Divergent Series: Application to Some Physical Problems by Prof. 

Dhiranjan Roy, Ex-Professor, JU. 

2. Modeling of Blood Flow Through a Deformable Artery by Prof. G C Shit, JU 

Prof. D. Roy started his research work on Lattice Dynamics and Defects in Crystals 

and subsequently switched to Computational Physics and Interdisciplinary Applications.Prof. 

Roy has published about 75 papers in different Journals of International repute and a number 

of articles in teaching Journals.After serving New alipore College as a lecturer in Physics for 

about 15 years he joined Jadavpur University and retired in 2007.His long experience in 

teaching Mathematical Physics has served the interest of UG, PG students and researchers.He 

has proved himself as a brilliant teacher in the true sense of the term. Hope his review article 

of 69 pages will be very helpful to advanced learners and teachers. 

Prof. Gopal Chandra Shit is presenty a Professor in Applied Mathematics,J U.His 

research interest includes Biofluid Mechanics,Microfluidics and Bioheat Transfer in living 

tissues.He has already published more than 110 research papers in reputed international 

Journals. He is also recipient of several prestigious Awards and Honours. 

Calcutta Institute of Theoretical Physics is particularly grateful to the department of 

Physics, Presidency University for providing the premises, technical equipments and ever-

helpful staff. And last, but certainly not the least, CITP wishes to thank wholeheartedly all  

the contributors and participants of this event for making it an informative as well as 

enjoyable two days! 

 

Susil Kumar Sarkar, 

Secretary, CITP, Kolkata 

http://www.citphy.org.in/
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Introduction to Divergent Series :

Application to Some Physical Problems

Dhiranjan Roy

Retired Professor, Department of Physics, Jadavpur
University, Kolkata

(This papaer was presented in the 2-day National Seminar organized by
CITP during October 22-23 ,2024)

Abstract
The mathematical analysis of many scientific problems involves infinite

series at some stage which may be convergent or divergent. Evaluating the
sum of an infinite series is the same as finding the limit of the associated
sequence. For a divergent series we introduce the concept of anti-limit
(from where the sum diverges). Nonlinear sequence transforms are effi-
cient in evaluating the sum of slowly convergent series as well as in finding
the sum of a divergent series. In the present article, I shall briefly present
the different nonlinear transforms like the Padé approximants and Levin-
like transforms and consider some applications in the different fields of
physics.

email: dhiranjanroy1@yahoo.in
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I Introduction

The mathematical analysis of many scientific problems involves infinite series
at some stage. An infinite series S and its n-th partial sum Sn are defined as

S =

∞∑
i=0

ti, Sn =

n−1∑
i=0

ti. (1)

where the ti’s are complex numbers in general. It is evident that the sum of an
infinite series S = limn→∞ Sn. The sum S of the infinite series is defined as the
limit of this infinite sequence, where this limit exists, i.e., series and sequence,
can sometimes be used interchangeably. If the limit exists for an infinite series
or sequence, then it is said to be convergent and when this limit is not finite, it
is said to be divergent.

An example of a slowly convergent series is the well known power series for
ln (1 + z), which converges only for |z| < 1. For z = 1 we have

ln 2 =

∞∑
i=0

(−1)
i

i+ 1
= 1− 1

2
+

1

3
− 1

4
+ ... (2)

so that it is barely convergent, in fact conditionally so. One comes across this
series very often, for instance in evaluating the Coulomb energy of an infinite
one dimensional ionic lattice. To evaluate ln 2 to an accuracy of n decimal digits
from equation - 2, one would need at least 10n terms. Hence to obtain ln 2 by
the direct method correctly up to 16 decimal places one has to sum at least 1016
terms. A computer which sums 106 terms a second will need at least 300 years
to compute it!

Another mathematical example is provided by the series representation of
the Riemann zeta function

ζ (s) =

∞∑
n=0

(n+ 1)
−s
. (3)

The infinite series diverges for negative negative s. Though this infinite series
for ζ (s) converges when s > 1, yet the rate of convergence is not very good
unless the value of s is moderately large. If s is only slightly greater than unity,
the rate of convergence is extremely slow. For example, to evaluate ζ (1.001) to
an accuracy of one in hundred one would require about 1020 terms!

Consider the simple differential equation

(1 + x)
dy

dx
= −2y, y (0) = 1. Solution ⇒y (x) =

1

(1 + x)
2 ;

2



Normally we attempt series solution for a differential equation when it cannot
be solved analytically. However, there is no harm to attempt a series solution for

the above problem . Assuming y (x) =
∞∑

n=0

anx
n, we get the recurrence relation

an+1 = −n+ 2

n+ 1
an with a0 = 1 and hence

y (x) = 1− 2x+ 3x2 − 4x4 + · · · .

For x = 1, we get the series y (1) = 1− 2 + 3− 4 + · · · which is divergent. Can
I conclude that the sum of this divergent series is y (1) = 1

22 = 1
4?

Different sequence transforms can be used to obtain different approximants
of the same function. There is also the possibility of applying these transforms
on series whose terms are not monomials, a Fourier series being an example.
Thus convergence accelerating sequence transforms are interesting on their own
as well as in their application in various fields where one has to deal with infinite
series and sequences which may be divergent. I shall try to convince the reader
that most of the divergent series the sum , we encounter in physical problems,
has a meaning. Some of these transforms and their applications in various
situations form the contents of this article.
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2 Sequence Transform

Let {Sn} be an infinite sequence with limit S. A sequence transform turns
{Sn} into another sequence {S′

n}. Each member of the derived sequence is a
function of (k + 1) terms, say, of the original sequence. Formally we can write

{S′
n} = Tkn{Sn}.

The index k is a measure of the number of terms of the sequence required to
define the corresponding transform. In particular, the original sequence can be
written as T0n ({Sn}) ≡ {Sn}and for obvious reasons is also called the zeroth
sequence. Therefore, a sequence transform converts an infinite sequence into
another, unless it exactly evaluates the limit of the latter. If this limit is an
irrational number, there is no possibility of the derived sequence being finite.

Let us consider the forward difference operator ∆ , defined by

∆k+1Sn = ∆kSn+1 −∆kSn, ∆0Sn = Sn.

The individual terms of a series and its partial sums are thus simply related.
The terms series and sequence can therefore be applied interchangeably in that
a sequence transform may very well be called a series transformation.

Both contexts are useful, but a word of note here. A convergent sequence
need not always be associated with the partial sums of a series. Such sequences
may arise in many different ways as, for example, when the sequence is defined
by successive partial products,

Sn ≡ Πn−1
i=0 ti

so that S = Π∞
i=0ti.

If both the sequences {Sn} and T ({Sn}) converge to the same limit, the
transform T is said to be regular. Thereby, a regular sequence transform provides
an operational definition of the limit of an infinite sequence, consistent with the
usual definition. For a regular sequence transform it may so happen that

|S − Tkn{Sn}| < |S − Sn|.

Then T is a convergence accelerating sequence transform. This means that
Tkn{Sn} is closer to S than Sn itself.

Sequence transforms belong to two broad classes, linear and nonlinear. The
transform T is said to be linear if

• (i) T{cSn} = cT{Sn} where c is a constant, in general complex.
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• (ii) T{Sn + S
′

n} = T{Sn}+ T{S′

n}

Otherwise the transform is said to be nonlinear.
The nonlinear methods are more powerful in general than the linear ones.

A linear method may, however, be comparable in effectiveness in special cir-
cumstances as, for example, when the parameters of the sequence transform are
suitably chosen for specific sequences or when the method is exact on a cer-
tain class of sequences. Many transforms are very effective on different classes
of sequences and Delahaye and Germain-Bonne have proved that a universal
transformation which accelerates the convergence of all types of logarithmic
sequences cannot exist [1].

2.1 Types of Convergence

Let {Sn} be a sequence which converges to the limit S. Define the remainder
rn after n terms as rn ≡ S − Sn. For a converging sequence limn→∞ rn = 0.
The ratio

ρ ≡ lim
n→∞

rn+1

rn
= lim

n→∞

S − Sn+1

S − Sn
(4)

can be used to classify sequences by the nature of their convergence. If |ρ| > 1,
the sequence diverges and if |ρ| ≤ 1, it converges. If |ρ| < 1, the convergence
is said to be linear and if |ρ| = 1, the convergence is said to be logarithmic. If,
however, |ρ| = 0, the convergence is said to be hyperlinear.

The most common example of a linearly convergent series is the geometric
series for which tn = zn−1 and S = (1− z)

−1 so that

Sn =

n−1∑
i=0

zi = S − zn

1− z
, 0 < |z| < 1. (5)

Here ρ = z.

2.2 DivergentSequences

In the following, divergent series will be taken up quite often. Hence it is
convenient to include a short discussion at this point. Divergent series have
been discussed widely and in depth in many places [2-4]. Here we adopt a
somewhat unusual approach, that of introducing the anti limit [5]. There is no
pretense to either exactness or rigour. Also, this seems to be as good a place as
any, to introduce a pictorial representation of convergence acceleration, which
provides some insight. In this, the partial sums are plotted against the sequence
index and the limit is shown by a straight line parallel to the abscissa as in figure
1.1.

The limit of a convergent sequence is now seen from figure -1 to be the point
at which the variations level out for a monotone sequence and the point where
the oscillations of an alternating sequence die out. For a divergent sequence, the
anti limit can be thought of as the point from which the sequence moves away
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Figure 1: Partial sums Sn of (a) an alternating convergent sequence, (b) a
monotone convergent sequence and (c) a monotone divergent sequence.

steadily and, for oscillatory divergence, the point from which the oscillations
begin. This picture will be invoked frequently in order to introduce or clarify a
point.

The existence of the anti limit can be illustrated by examples if one is pre-
pared to forsake analytical caution for the time being, and believe the assurance
that formal and rigorous justifications for the results thus obtained exist in spite
of the apparent liberties taken.

The sum of the infinite geometrical series is
∞∑
i=0

zi =
1

1− z
, |z| < 1.

Differentiating successively we have,(
z
d

dz

)ν
( ∞∑

k=0

zi

)
=

∞∑
i=0

iνzi.

Within the domain of convergence of the geometric series we have formally

S (ν) ≡
∞∑
i=0

iνzi =

(
z
d

dz

)ν
1

1− z
, |z| < 1. (6)

Now the right hand side of the above identity is easily evaluated even for values
of z for which |z| > 1 (except for the point z = 1). But the series on the left hand
side becomes a divergent series for any such value of z. Thus finite numbers
may be associated with such divergent series and may be defined as their sums.
We reserve a somewhat more elaborate discussion of divergent series and their
summability for a later section. Here we demonstrate a summability method
only for series defined by the left hand side of equation -6. Specifically,

∞∑
i=0

zi =
1

1− z
.
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For z = −1, the left hand side gives the divergent series

1− 1 + 1− 1 + · · · ,

whereas the right hand side gives the value 1
2 . Similarly, using ν = 1 and 3 in

equation 6 we have

∞∑
i=0

izi =
z

(1− z)
2 .

∞∑
i=0

i3zi =
z
(
z2 + 4z + 1

)
(1− z)

4 .

Using the value z = −1 on both sides we sum the resulting divergent series as

1− 2 + 3− 4 + · · · =
1

4

13 − 23 + 33 − 43 + · · · =
1

8
.

Thus finite values can be obtained for sums of series which formally diverge.
The values thus obtained can be justified by more sophisticated analysis [2, 6].
Interestingly, summability methods work mostly for divergent series which are
alternating in nature. A monotone divergent series can usually be summed if
it can be related to a corresponding alternating counterpart. For example, the
series

1 + 2 + 3 + 4 + · · · ,
which is basically ζ (−1) [6] has the value − 1

12 and can be summed by using the
result

1 + 2 + 3 + 4 + · · · = 1− 2 + 3− 4 + · · ·+ 2 (2 + 4 + 6 + · · ·)

or
3 (1 + 2 + 3 + 4 + · · ·) = − (1− 2 + 3− 4 + · · ·)

and
1 + 2 + 3 + 4 + · · · = − 1

12
.

We mention here Hardy’s treatise on divergent series [2] as well as the fact that
a large part of the analytical treatment of divergence concerns itself only with
linear sequence transforms.

2.3 LinearTransforms

2.3.1 HuttonTransform

A glance at the graphical representation (figure - 2) of a convergent alternating
sequence suggests what happens to be the simplest convergence accelerating

7
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Figure 2: Iterations of Hutton transform on the sequence for ln 2 (equation -
2). The circles represent the zeroth sequence; + represents the first applica-
tion of the Hutton transform; the squares represent the next application of the
transform.

sequence transform, viz., the Hutton transform and simultaneously indicates
some of its possible properties. For general matrix transformation one is referred
to the book by Petersen [7].

Clearly the mean of any two successive terms of {Sn} is much nearer to the
limit S than either of them and has the sign of the earlier term. Thus

S′
n = T1n ≡ 1

2
(Sn + Sn+1)

defines a sequence transformation. Both sequences Sn and S′
n tend to the same

limit S. and the remainder r′n in the transformed sequence is the mean of rn and
rn+1, and is smaller in magnitude than either of them since the magnitude of
rn decreases steadily while alternating in sign. Therefore r′n converges to zero
faster than rn so that S′

n converges to S faster than Sn. The convergence of Sn

has thus thus been accelerated by means of a simple sequence transform.
For a zeroth sequence which is alternating, the derived sequence is also

alternating. However, the oscillation of the derived sequence about the limit is
much smaller in magnitude as can be seen from the figure- 2. The process can
be applied iteratively to get better results. The results of two iterations are also
indicated in figure - 2.

If both Sn and Sn+1 are of the same sign then Sn+1 is already closer to S
than (Sn + Sn+1) /2, so that it is apparent that the Hutton transform is not

8



capable of accelerating the convergence of a monotone sequence.

2.3.2 EulerTransform

In 1755 Euler published the series transform which bears his name and is useful
device for accelerating the convergence of an alternating series. Let

S = a1 − a2 + a3 − a4 + · · ·+ (−1)
n+1

an + · · ·

with all an > 0. Then

S =
1

2
a1 −

1

2
(a2 − a1) +

1

2
(a3 − a2) + · · ·

=
1

2
a1 −

1

2
∆a1 +

1

2
∆a2 −

1

2
∆a3 + · · ·

=
1

2
a1 −

∆

2
(a1 − a2 + · · ·)

=
1

2
a1 −

1

2
∆S.

so that

S =
1

2

(
1 +

∆

2

)−1

a1

whence, by means of a formal binomial expansion,

S =

∞∑
j=0

(−1)j
1

2j+1
∆ja1. (7)

In order to apply the Euler transform we must first make a difference table for
the terms of the series. The application of the Euler transform on the series
given in equation-2 does not need much numerical work since an = 1

n . For then,

∆kan =
(−1)kk!

(n)k+1
, so that ∆ka1 =

(−1)k

k + 1
.

Therefore

ln 2 =

∞∑
j=1

1

j 2j
. (8)

One can make a difference table and evaluate ln 2 from equation-7 by using the
difference table or directly from equation-8.

The sum over the first ten terms is

S =
1

2
+

1

22
1

2
+

1

23
1

3
+

1

24
1

4
+

1

25
1

5
+

1

26
1

6
+

1

27
1

7
+

1

28
1

8
+

1

29
1

9
+

1

210
1

10

= 0.693065.
Thus with only ten terms of the derived series we obtain an accuracy of three

decimal places.
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Figure 3: Graphical representations of the relation given by equation-11; (a)
for an alternating convergent sequence; (b) for a monotone convergent sequence
and (c) for a monotone divergent sequence.

2.4 Nonlinear Convergence Accelerating Transforms

Nonlinear sequence transforms are fundamentally different from linear sequence
transforms in that the derived sequence is a nonlinear function of the original
sequence. Let {Sn} be an infinite sequence with limit S. Let us define a sequence
{gn} related to the sequence {Sn} as follows:

S − Sn = rn = gn∆Sn, (9)

where {rn} is the sequence of remainders. For a graphical representation of
the relation refer to the schematic plots of the partial sums of a convergent
alternating series, a convergent monotone series and a monotone divergent series,
shown in figure-3. The horizontal dotted lines are the limits of the sequences
in cases of convergent series and the anti-limit for the divergent series. Let
gn denote the distance between the points (n, S) and the point at which the
straight line joining Sn and Sn+1 intersects the straight line Si = S. Then from
the dotted similar triangles one obtains the following relation for all the cases:

S − Sn

gn
=
Sn+1 − S

1− gn
= Sn+1 − Sn (10)

whence
S = Sn + gn∆Sn. (11)

It can be seen from the illustration that in the limit n→ ∞, gn approaches
the value 1

2 for an alternating series. But for a monotone series gn goes to
infinity. When this relation is written in the form

S = (1− gn)Sn + gnSn+1,

it is obvious that the transform defines a mean on {Sn} with respective weights
{gn}.

10



The nature of the approach of Sn to the limit S is reflected in the nature of
variation of gn with n. If the dependence of gn on n can be guessed from the
original sequence, then this information can be used to derive an expression for
the limit.

Equation-11 can be written in a more general form

S = Sn + gnωn, (12)

where ωn = ∆Sn or∆Sn−1 and both forms are useful.
Thus, an approximation for gn provides a corresponding approximation for

S. The technique of accelerating the convergence of a sequence consists in
approximating the limit from the information contained in the sequence itself.
If each term in {gn} is assumed to be a known function of (k + 1) arguments,
i.e., if

gkn = gkn (Sn, ρn+1, ρn+2, . . . , ρn+k) (13)

with
ρn ≡ tn+1

tn
=

∆Sn

∆Sn−1
,

then gkn can be taken as an approximation to gn.
With this approximation for gkn, a corresponding approximation for S may

be obtained by the sequence transformation

Tkn{Sn} = Sn + gkn∆Sn. (14)

In the double-indexed infinite table of transformed values Tkn, each element
approximates the limit of the original infinite sequence. Improvement in the
approximation is expected along the rows, the columns and the diagonals.

To be useful a sequence transform which accelerates convergence has neces-
sarily to be regular. Hence the convergence of the derived sequence may again
be accelerated by using the same transform and this bears further repetition.
Such iteration is expected to improve the estimation of the limit. The iterative
scheme for the approximation may thus be written as

T
(µ+1)
kn = T

(µ)
kn + g

(µ)
kn ∆T

(µ)
kn (15)

with
T

(0)
kn = Sn

and
g
(µ)
kn = gkn

(
{T (µ)

kn }
)

where µ is the order of iteration. The n-th term in the µ-th iteration of the k-th
order transform thus requires n+ µ(k + 1) terms of the original series. In most
applications n = 1.

We shall discuss the different transforms and their iterations in the subse-
quent sections.
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2.4.1 The Aitken’s ∆2-transform

Perhaps the simplest and the oldest nonlinear transform is Aitken’s ∆2-transform
[8] and has been amply discussed in the literature. As we have discussed in the
previous section, an approximation for gn in equation-11 gives an approximation
for S. The simplest assumption for gn is that gn is independent of n, i.e., gn
is a constant, which implies that ∆gn = 0. With this assumption we get from
equation -11

∆gn = ∆

(
S − Sn

∆Sn

)
= 0. (16)

As S is the limit of the sequence and consequently independent of n, we can
take S outside the ∆-operator and solve for S. This gives

S ≃ A2n =

∆

(
Sn

∆Sn

)
∆

(
1

∆Sn

) . (17)

T2n or Tn is the symbol for a general transform and to distinguish between
the different transforms we use the symbol An for the above transformation.
Henceforth we shall omit the index k when there is no scope of confusion and
write An for A2n.

This is the famous ∆2-transform of Aitken, which we can recast into other
equivalent forms such as

An =

Sn+1

∆Sn+1
− Sn

∆Sn

1

∆Sn+1
− 1

∆Sn

, (18)

An =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
., (19)

An = Sn+1 −
∆Sn+1∆Sn

∆2Sn
, (20)

An = Sn − (∆Sn)
2

∆2Sn
. (21)

Though the above forms are formally equivalent, yet they may differ from
the point of view of numerical computation.

For a geometric series gn =constant and ∆gn = 0. This implies that the
∆2-transform will be exact on a geometric series.

The properties of the ∆2-transform are discussed in the books by Wimp [9]
and Brezinski and Zaglia [10] and in the review article by Weniger [11].

One can use the iterated version of the Aitken transform can be written as

A(µ+1)
n = An{A(µ)

n }, withA0
n{Sn} = Sn (22)
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Table 1: Iteration of ∆2-transform on the series for ln 2 given in equation 2.
n A

(0)
n A

(1)
n A

(2)
n A

(3)
n

1 1.0 0.7 0.69327731 0.6931488
2 0.5 0.69047619 0.69310576
3 0.83333333 0.69444444 0.693163341
4 0.58333333 0.69242424
5 0.78333333 0.69358974
6 0.61666667
7 0.75952381

Table 2: Iteration of ∆2-transform on the series for ζ(2) given in equation 3.
n A

(0)
n A

(1)
n A

(2)
n A

(3)
n A

(4)
n A

(5)
n

1 1.0 1.45 1.5755 1.6182 1.6345 1.6432
2 1.25 1.5040 1.5903 1.6228 1.6358
3 1.3611 1.5347 1.6000 1.6260 1.6369
4 1.4236 1.5545 1.6068 1.6285
5 1.4636 1.5683 1.6118 1.6304
6 1.4914 1.5785 1.6157
7 1.5118 1.5862 1.6187
8 1.5274 1.5924
9 1.5398 1.5974
10 1.5498
11 1.5580

For implementing the ∆2-transform one requires at least three terms in the
original series and for finding A(µ)

n one requires (2µ + n) terms of the original
series.

The performance of the iteration of ∆2-transform on the sequence for ln 2
and ζ (2) are shown in the table-1 and table-2 respectively.

•▷

FindingEulerConstant
Let us consider another sequence defined by

Sn =

n∑
i=1

1

i
− lnn. (23)

Both the individual terms on the right hand side, i.e,
∑n

i=1
1
i and lnn, diverge

to infinity as n tends to infinity. However, limn→∞ Sn remains finite. The
limit is known as the Euler constant γ. Its value is 0.577215664901533 · · ·.

The convergence of the sequence given by equation-23 is very slow. With
103 terms one gets only 0.57771558 from the direct sum. The iteration of ∆2-

13



Table 3: Iteration of ∆2-transform on the sequence given by equation-24.
n m = 2n−1 A

(0)
n A

(1)
n A

(2)
n A

(3)
n

1 1 1.0 0.552329 0.577221
2 2 0.806853 0.571282
3 4 0.697039 0.575804
4 8 0.638416
5 16 0.608140

transform accelerates the convergence of this sequence. However, there is a
significant gain on redefining the zeroth sequence as

Sn =

2n−1∑
1

1

i
− ln

(
2n−1

)
. (24)

In other words, from a sequence {Sn, n = 0, 1, . . .}, the sub-sequence {S2n−1 , n =
0, 1, . . .} is taken as the zeroth sequence. Such redefinition of a sequence is often
helpful. Table-3 displays the result obtained by applying the ∆2-transform on
the above redefined sequence. ◁•

2.5 The Levin-Weniger Transforms

It has been shown that imposing a structure on gn leads to a specific sequence
transform. With ωn = ∆Sn, the condition ∆gn = 0 leads to the ∆2-transform.
It is tempting to continue the generalization according to the scheme

∆kgn = 0, k = 1, 2, 3, . . . (25)

which gives rise to the sequence transform in following form:

∆k

(
S − Sn

∆Sn

)
= 0

or

S ≈ d
(n)
k =

∆k (Sn/∆Sn)

∆k (1/∆Sn)
(26)

This sequence transform was devised by Drummond [13] and bears his name.
For positive series, however, the scheme does not improve convergence beyond
k = 2.

As stated earlier, gn to increase monotonically with n for a positive series. A
monotone sequence {Sn} converges marginally when ∆Sn ∼ 1

n , implying that gn
cannot increase faster than, or even as fast as n2. This gives some understanding
of why d(n)k does not work well on a monotone sequence for k > 2.

It can be argued that gn increases faster than n but slower than n2[18] .
Further refinements in the functional form can be achieved by adding terms in

14



1
n and its higher powers. Accordingly, a generally valid form for gn would be

gn = αn+

∞∑
i=0

αi

ni
(27)

where α and α′
is are constant. When these constants are known for a sequence,

thereby its limit is also known.
To obtain the Levin transforms, we start from the more general ansatz

S = Sn + gknωn (28)

where ωn is either ∆Sn or ∆Sn−1. Let us now approximate gkn by terminating
the series in equation -27, so that

gkn = αn+

k−2∑
i=0

αi

ni
=
Pk−1

nk−2
(29)

or
S = Sn +

Pk−1

nk−2
ωn (30)

where Pk−1 is a polynomial in n of degree k − 1 involving k constants. As ∆k

will annihilate a polynomial of degree k − 1, we have

∆kPk−1 = ∆k
(
nk−2gkn

)
= 0 (31)

The corresponding transform is

S ≈ u
(n)
k =

∆k
(
nk−2Sn/ωn

)
∆k (nk−2/ωn)

. (32)

and is referred to as the u-transform of Levin [14].
A generalization of this transform can be obtained by assuming

gkn = α (n+ β) +

k−2∑
i=0

αi

(n+ β)
i
=

Pk−1

(n+ β)
k−2

(33)

β being an arbitrary constant. This leads to

Tkn = u
(n)
k =

∆k
[
(n+ β)

k−2
Sn/ωn

]
∆k
[
(n+ β)

k−2
/ωn

] (34)

The expansion of the ∆-operator in the terms of a sequence,

∆kfn =

k∑
j=0

(−)j
(
k

j

)
fn+j ,

15



Table 4: Performance of u and t transforms (β = 0) on the series for ln 2 given
by equation-2. S is the limit of the sum obtained by the transform used
trans- absolute trans- absolute
form S relative form S relative
used error used error
u2 0.6875 8.1 10−3 t2 0.6944 1.9 10−3

u3 0.69345 4.4 10−4 t3 0.6931372 1.4 10−5

u4 0.6931423 7.0 10−6 t4 0.6931439 4.7 10−6

u5 0.6931465 8.4 10−7 t5 0.693147401 3.2 10−7

u6 0.69314722 7.1 10−8 t6 0.69314717779 4.0 10−9

u7 0.6931471795 1.5 10−9 t7 0.693147180015 7.9 10−10

u8 0.69314718046 1.3 10−10 t8 0.6931471806012 6.0 10−11

u9 0.6931471805678 1.3 10−11 t9 0.69314718055924 1.0 10−12

gives a corresponding explicit form for the transform (withωn = ∆Sn−1) as

u
(n)
k =

∑k
j=0(−)j

(
k
j

)
(β + n+ j)

k−2 Sn+j

∆Sn+j−1∑k
j=0(−)j

(
k
j

)
(β + n+ j)

k−2 1
∆Sn+j−1

. (35)

and one gets the u-transform of Levin [14]. Very often in numerical work,
overflow may occur for large values of k. Hence both the numerator and the de-
nominator are divided by the common factor (β + n+ k)

k−2 in order to decrease
the magnitude of the respective terms. This gives

u
(n)
k =

∑k
j=0(−)j

(
k

j

)
(β + n+ j)

k−2

(β + n+ k)
k−2

(
Sn+j

∆Sn+j−1

)
∑k

j=0(−)j
(
k

j

)
(β + n+ j)

k−2

(β + n+ k)
k−2

(
1

∆Sn+j−1

) (36)

Though it has been proved that the u-transform is regular and accelerative
on linearly convergent series [19] and also that it is regular on alternating series
[14,19], there exists no analysis in the literature which throws any light on the
problem of regularity of the u-transform on logarithmically convergent monotone
sequences. From a numerical study on a number of test sequences it appears
that the instability of the u-transform is not intrinsic to the algorithm, but
is caused by the truncation errors inevitably incurred in a finite precision real
arithmetic [20,21].

For an alternating sequence, gn does not diverge but tends to a finite value,
so instead of equation-33 one can assume

gn =

∞∑
i=0

αi

(n+ β)
i

(37)
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and write the truncated series as

gkn =

k−1∑
i=0

αi

(n+ β)
i
=

Pk−1

(n+ β)
k−1

. (38)

For ωn = ∆Sn−1, one gets in a similar way the t-transform of Levin,

t
(n)
k =

∑k
j=0(−)j

(
k

j

)
(β + n+ j)

k−1

(β + n+ k)
k−1

(
Sn+j

∆Sn+j−1

)
∑k

j=0(−)j
(
k

j

)
(β + n+ j)

k−1

(β + n+ k)
k−1

(
1

∆Sn+j−1

) (39)

This transformation was proposed by Levin [14] for an alternating series.
Here also, for convenience we have divided both the numerator and denominator
by the common factor (n+ β + k)k−1. Smith and Ford [15] remarked that this
transform gives the best simple remainder estimate for a convergent series with
strictly alternating terms. It may be remarked that, with ωn = ∆Sn, one can
obtain a similar set of transforms. As these transforms will need one extra term
for their implementation, we do not consider these transforms. The parameter
β can be properly exploited in many situations. However, in the subsequent
applications we shall choose β = 0. In constructing a transform of any order,
one would encounter a term ∆S0 = S1−S0, and S0 should be chosen to be zero.
In most applications we shall start with n = 1 and designate the transforms as
uk and tk respectively.

It is found that the t-transform fails to accelerate the convergence of the
series for ζ (2). Though the t-transform works somewhat better on an alternat-
ing series, the u-transform performs reasonably well for both alternating and
monotone sequences.

•◁
A different class of transform can be obtained by writing the truncated

expression for gkn in the form

gkn =

k−1∑
i=0

αi

(n+ β)i
=

Pk−1 (n)

(n+ β)k−1

, (40)

where (z)ν is the usual Pochhammer symbol

(z)ν =
Γ (z + ν)

Γ (z)
= z (z + 1) (z + 2) · · · (z + ν − 1) .

Proceeding exactly as before (ωn = ∆Sn−1)one obtains the τ -transform and is
given by

τ
(n)
k =

∑k
j=0(−)j

(
k
j

)
(β + n+ j)k−1

Sn+j

∆Sn+j−1∑k
j=0(−)j

(
k
j

)
(β + n+ j)k−1

1
∆Sn+j−1

. (41)
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Table 5: Performance of τ and y transforms (β = 0) on the series for ln 2 given
by equation-2. S is the limit of the sum obtained by the transform used.
trans- absolute trans- absolute
form S relative form S relative
used error used error
τ2 0.6944 1.9 10−3 y2 0.6875 8.1 10−3

τ3 0.69321 9.8 10−5 y3 0.69345 4.4 10−4

τ4 0.6931497 3.7 10−6 y4 0.693161 2.0 10−5

τ5 0.69314726 1.2 10−7 y5 0.6931476 7.1 10−7

τ6 0.693147183 3.9 10−9 y6 0.693147196 2.3 10−8

τ7 0.69314718064 1.2 10−10 y7 0.69314718106 7.3 10−10

τ8 0.693147180562 3.8 10−12 y8 0.69314718057 2.3 10−11

τ9 0.6931471805600 1.2 10−13 y9 0.6931471805604 1.0 10−13

This is similar to the t-transform of Levin with the power replaced by the
Pochhammer symbol. The transform was introduced by Sidi [16,17]. Weniger
[11] independently discovered it and fruitfully demonstrated that this can be an
extremely useful computational tool [22, 23]. With

gkn = α (n+ β) +

k−2∑
i=0

αi

(n+ β)i
=

Pk−1 (n)

(n+ β)
k−2

(42)

and proceeding in a similar way one obtains

y
(n)
k =

∑k
j=0(−)j

(
k
j

)
(β + n+ j)k−2

Sn+j

∆Sn+j−1∑k
j=0(−)j

(
k
j

)
(β + n+ j)k−2

1
∆Sn+j−1

. (43)

In most of the applications, one uses the transforms with n = 1. Very often in
numerical work, overflow may occur for large k. Hence, both the numerator and
denominator τ (n)k and y(n)k are divided by the common factor (β + n+ j)k−1 and
(β + n+ j)k−2 respectively. As before, if we start with n = 1we shall designate
the transforms as τk and yk respectively. In these cases, as well, we encounter
a term ∆S0 = S1 − S0 in the sum and we must choose S0 = 0. A new class of
similar transforms can be obtained with ωn = ∆Sn [11].

Subsequently, Chaterjee and Roy extended these transforms which are tai-
lored to sum the hyper-geometric series [35]

2.6 PadéApproximants

. Let f (z) be a function of a complex variable z and let its power series expansion
is known, then the Padé approximant express it in the form of a ratio of two
polynomials. The [N/M ] Padé approximant of f (z) is the uniquely determined
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irreducible rational polynomial defined by

[N/M ] =
AN (z)

BM (z)
(44)

where AN (z) and BM (z) are polynomials in z of degree N and M respectively,
such that for any pair of integers (N,M),

f((z)− [N/M ] = O
(
zM+N+1

)
, z → 0. (45)

The basic idea of Padé approximation is to choose an approximating function in
such a way that the value of the function at z = 0 and its first N+M derivatives
there agree with those of the given function and this is done by matching the
first N +M + 1 terms of the original power series. Thus this approximation is
an extreme case of one point interpolation, higher accuracy being achieved by
matching higher derivatives at that point.

As the value of a rational function remains unchanged if both the numer-
ator and denominator are divided by the same constant, the constant term in
denominator can be set to unity, so that the structure of the Padé approximant
[N/M ] is,

[N/M ] =
p0 + p1z + p2z

2 + . . .+ pNz
N

1 + q1z + q2z2 + . . .+ qMzM
. (46)

where the pi’s and the qi’s are constant coefficients. The assumption that q0 = 1
is quite general. If q0 = 0, the rational function does not exist at z = 0, unless
p0 = 0, in which case there is a common factor between AN (z) and BM (z) and
the approximant is really [N − 1/M − 1]. Hence in the subsequent discussion
we shall always assume q0 = 1.

Let us now consider the difference

f (z)− [N/M ] =

( ∞∑
k=0

akz
k

)(
M∑
i=0

qiz
i

)
−

N∑
j=0

pjz
j

M∑
j=0

qjz
j

In order to conform to equation- 45, the coefficients of zj in the numerator
should vanish for j = 0, 1, 2, . . . , N +M , which gives

j∑
i=0

aj−iqi = pj , j = 0, 1, 2...N

with pj = 0 if j > N and

j∑
i=0

aj−iqi = 0 j = N + 1, N + 2...N +M (47)
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with qj = 0 if j > M and ai = 0 for i < 0. The equation-47 represents a set of
N +M +1 linear equations in N +M +1 unknowns. This can be solved to get
the coefficients {pi} and {qi} provided the coefficient matrix is non singular.

It is customary to arrange the Padé approximants [24 ,25,26] in the form of
a two dimensional array shown below and referred to as the Padé table.

[0/0] [0/1] [0/2] [0/3] · · ·
[1/0] [1/1] [1/2] [1/3] · · ·
[2/0] [2/1] [2/2] [2/3] · · ·
[3/0] [3/1] [3/2] [3/3] · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

The first column of the Padé table consists of the partial sums of the Taylor
series. The elements running parallel to the main diagonal have a constant dif-
ference in the degree of the numerator and the denominator. The anti diagonal
sequences all involve the same number of coefficients. The elements in the di-
agonal and above it are proper fractions, while those below are not. In general,
if the order of the polynomials in the numerator and denominator of a rational
function be n and m respectively, then the [N/M ] Padé approximant reproduces
this function exactly for N ≥ n and M ≥ m.

As an example, the [0/1], [1/1] and [1/, 2] Padé approximants for the function
ln(1 + z)/z are respectively given by 1

1+ z
2
, 1+ z

6

1+ 2z
3

and 1+ z
2

1+z+ z2

6

.

2.7 Summing Divergent Series

2.7.1 Analytic Continuation

If a function f (z) be analytic near every point P (z0) on the complex plane,
then we can expand the function in a power series of (z − z0), the coefficients
being the successive derivatives of the function at z0. The function may be
singular at one or more than one point. If A be a singularity of f (z) nearest
to P , then the circle within which this expansion is valid is the one with the
centre at P and radius of convergence equal to PA (figure-4). For example, for

the function f (z) =
1

(1− z)
and z0 = 0, the circle of convergence is a circle of

radius 1 with the centre at the origin. The question one now faces is - given
a power series which converges and represents a function for values of z within
the circle of convergence, can we find by means of it the value of the function for
values of z outside the circle of convergence? The answer to this is yes and for
this purpose let us choose a point P1 within the circle of convergence which does
not lie in between P and A on the line PA. From the given series we can find
the value of the function and all its derivatives at P1 and consequently build a
Taylor series with P1 as the origin. This new series will now define a function
analytic within some other circle with P1 as centre. This circle will extend to
the singularity which is nearest to P1 and this may or may not be A. In either of
the cases, this new circle will have some region which lie partly outside the old
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Figure 4: Pictorial representation of analytic continuation of a function. The
unshaded portion is the region of the complex plane within which the function
is analytic. The shaded portion is the region where the function is analytically
continued.

circle of convergence. For points within this region the new series may be used
to define the value of the function, although the old series could not be used
to do so. This process can be continued and the process is known as analytic
continuation.

To illustrate the process of analytic continuation let us consider the expan-

sion of f (z) =
1

(1− z)
about z0 = 0, which can be written as

f (z) =
1

(1− z)
= 1 + z + z2 + z3 + · · · (48)

The function has a singularity at z = 1 and hence the radius of convergence of
the series is 1 and the function is analytic for |z| < 1. The above series cannot
be used to find the value of the function for z = − 5

4 . But, using this series we
can evaluate the function and all its derivatives for, say, z = − 3

4 and find the
Taylor series expansion about z = − 3

4 which can be written as

4

7

[
1 +

4

7

(
z +

3

4

)
+

(
4

7

)2(
z +

3

4

)2

+

(
4

7

)3(
z +

3

4

)3

+ · · ·

]

and the radius of convergence of this series is 7
4 and its center is at z = − 3

4 . The
point z = − 5

4 lie within this circle and we can use the above series for finding
the value of the function at z = − 5

4 and this is given by

4

7

[
1 +−2

7
+

(
2

7

)2

−
(
2

7

)3

+ · · ·

]
=

4

7

1

1 + 2
7

=
4

9

and agrees with the value of the function 1
(1−z) at z = − 5

4 . Though the original
series could be used to find the value of the function for z = − 5

4 , we can use
the series subsequently obtained, to find the value by the process of analytic
continuation. There are various ways by which the sum of a divergent series
can be evaluated. We consider a few of them in the subsequent sections.
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2.7.2 Borel’s Method of Summatiom

Let

f (z) =

∞∑
0

anz
n

be analytic for |z| ≤ r.
Let us define

ϕ (z) =

∞∑
0

an
n!
zn

and consider the function

f1 (z) =

ˆ ∞

0

e−tϕ (zt) dt

This integral is an analytic function for |z| < r. Integrating by parts we get

f1 (z) =
[
−e−tϕ (zt)

]∞
0

+ z

ˆ ∞

0

e−tϕ′ (zt) dt

=
[
−e−tϕ (zt)

]∞
0

+
[
−ze−tϕ′ (zt)

]∞
0

+ z2
ˆ ∞

0

e−tϕ′′ (zt) dt

=

m∑
n=0

[
−zne−tϕ(n) (zt))

]∞
0

+ zm+1

ˆ ∞

0

e−tϕ(m+1) (zt) dt

=

∞∑
0

anz
n = f (z) , (49)

as
Ltt→0e

−tϕ(n) (zt) = an

and
Ltt→∞e

−tϕ(n) (zt)) = 0 for |z| < r

Consequently

f (z) =

ˆ ∞

0

e−tϕ (zt) dt (50)

where ϕ (z) =
∑∞

0

an
n!
zn is called the Borel function [6] associated with

∑∞
0 anz

n.
Thus if

S =

∞∑
0

anz
n and ϕ (z) =

∞∑
0

an
n!
zn,

we can demonstrate that

S =

ˆ ∞

0

e−tϕ (zt) dt (51)
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and the series is said to be Borel summable. It may be mentioned that the
integral represents an analytic function in a more extended region than the
interior of the circle |z| = r and gives the analytic continuation of the function.

To illustrate this, let us consider once more the series

S = 1 + z + z2 + z3 + · · · =
∞∑
i=0

zi. (52)

The Borel function associated with the series is given by

ϕ (z) =

∞∑
0

zn

n!
= ez

and hence the Borel sum of the series can be written as

f (z) =

ˆ ∞

0

e−tϕ (zt) dt =

ˆ ∞

0

e−t(1−z)dt =
1

1− z
(53)

2.7.3 Application of NonlinearTransforms on Divergent Series

Let us consider the divergent geometric series

S = 1 + 2 + 4 + 8 + 16 + · · ·

which is Borel summable, the sum being -1.
The simplest nonlinear transform is the Aitken’s ∆2-transformation. To

apply the ∆2-transform on it we note that the first three terms of the sequence
of partial sums are

S1 = 1; S2 = 3; S3 = 7.

The ∆2-transform , when applied to this sequence, gives for the limit

S =
1
2 − 3

4
1
2 − 1

4

= −1

This is not surprising as we have already noted that the ∆2-transform sums a
geometric series exactly. •◁

Finding ζ (s) for arbitrary s

We consider the series for ζ (2) as a prototype example. The power of these
nonlinear transforms is better demonstrated by considering the series ζ (s) in
general. Using these transforms it is possible to obtain an expression for ζ (s)
which is valid for a wide range of s. The series for ζ (s), as given by equation-3,
when written explicitly is as follows:

ζ (s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·
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This series is of interest because of the fact that for s > 1 it is convergent and
for s < 1 it is a divergent one and is summable. For s = 1, it is divergent and
is not summable. In fact,

ζ (−2m) = 0; ζ (1− 2m) = −B2m

2m
,

and
ζ (2m) = (−1)m+122m−1π2m B2m

(2m)!
m = 1, 2, 3 · · · ,

where Bm’s are the Bernoulli numbers which are defined as x
ex−1 =

∑∞
n=0Bn

xn

n! .
It can be shown that except B1all other odd Bn’s are zero. The first few of the
even Bernoulli numbers are as follows:

B0 = 1,B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , B10 = 5

66 , · · ·.
To obtain an expression for ζ (s) we start with the series for η (s), which is

given by

η (s) = 1− 1

2s
+

1

3s
− 1

4s
+

1

5s
− · · ·

and use the relation between ζ(s) and η(s), which can be written as

η (s) =

(
1− 1

2s−1

)
ζ (s) .

Using the τ -transform of order 4, which requires only five terms of the series,
one can build an approximate expression for η (s), which is given by

η (s) ≃ τ4 =
1 + 16 2s S2 + 60 3s S3 + 80 4s S4 + 35 5s S5

1 + 16 2s + 60 3s + 80 4s + 35 5s
. (54)

In the above expression Sn’s are the partial sums of the series for η (s), i.e.,

S1 = 1, S2 = 1− 2−s, S3 = 1− 2−s + 3−s, · · ·

The coefficients in the expression given by equation-54 are the product of
(
k

j

)
and (j+1)k−1 with j running from 0 to k, where k is the order of the transform.

The expression for ζ (s) can thus be written as

ζ (s) ≃
(

2s−1

2s−1 − 1

)
×

1 + 16 2s S2 + 60 3s S3 + 80 4s S4 + 35 5s S5

1 + 16 2s + 60 3s + 80 4s + 35 5s
. (55)

It can be easily verified that for s = 0,−1,−2 the above expression reduces
respectively to − 1

2 , − 1
12 and 0, which are exact values of ζ (s) for the above

values of s, though the series is formally divergent for these values of s. For other
values of s, the expression reproduces the function approximately. For example,
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the values of ζ(2) and ζ(4) obtained from the expression are respectively are
1.64493257 and 1.08232256, the exact values being 1.644934066848227 · · · and
1.082323233711138 · · ·. The accuracy of the values obtained from the expression
increases as one considers large positive values of s. The expression reproduces
the function with sufficient accuracy even for s close to 1. For example, with
s = 1.001 the expression gives the value 1000.5809, the correct value being
1000.5773. However, for large negative values of s the function is not well
reproduced by the expression. The same expression can, however, be used to
evaluate ζ(s) for large negative s, if one agrees to use the remarkable result due
to Riemann [6]

ζ (1− s) = π−s21−sΓ(s)cos
(sπ

2

)
ζ(s) (56)

Thus, if one evaluates ζ (−19) from the above expression using the value of ζ (20)
calculated from equation- 55 one obtains the value 26.45621212121212243, which
is correct to eighteen digits! If one needs higher accuracy one can build a higher
order transform which is easy to build. Again, one can use equation- 55 to find
ζ ′ (0)and this gives −0.918950, the exact value being − 1

2 ln (2π) = −0.918939.

3 Global Approximations for Functions

3.1 Global Padé Approximants
In this section we focus our attention to the approximation of functions for which
asymptotic expansions are available and illustrate that good approximants for
the functions can be constructed which are valid for the entire range of the
variable even when the body of apriori information appears at the out set to be
quite small and refer these as global approximants. An early review of global
Padé approximation is given by Frost and Harper [27]. Some recent works on
two-point and multi-point approximants can be found in references [28-31] and
references cited therein.

If the power series expansion of a function f(z) s known, one can construct
the [n/m] Padé approximant for the function..

In the usual Padé approximants n and m can have any value. However, for
a global Padé approximant and this is restricted and n and m are related and
nature of the relation depends on the nature of the asymptotic expansion of the
function.

Let us now assume that we have, in addition, an asymptotic expansion for
f (z) in the form

f (z) ∼ b0 + b1y + b2y
2 + · · · , (57)
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where y = 1/z. This suggests that the degree of the polynomials of the numer-
ator and denominator of the [n/m] Padé approximant should be the same, i.e.,
n = m. Thus the global approximant for the function should be of the following
form:

f (z) ≃ [n/n] =
Pn (z)

Qn (z)
=
p0 + p1z + · · ·+ pnz

n

1 + q1z + · · · qnzn
. (58)

The problem is to determine the (2n+ 1) unknown constants. We want to fix
the constants in such a way that the first few terms of both the expansions
agree. The total coefficients that can be made to agree is obviously (2n+ 1). If
we impose that the first r (r < n) coefficients of the expansion of [N/N ] should
agree with those of the series expansion of f (z), then the set of r equations are
given by

j∑
i=0

aj−i qi = pj , j = 0, 1, 2, · · · , r − 1. (59)

To obtain the rest set of unknown coefficients, we recast equation-58 in the
following form by dividing both the numerator and denominator by zn and is
given by

[n/n] =
pn + pn−1y + · · ·+ p0y

n

qn + qn−1y + · · ·+ yn
(60)

and the rest set of equations now reduce to

j∑
i=0

bj−iqn−i = pn−j , j = 0, 1, 2, · · · , n

j∑
i=0

bj−iqn−i = 0, j = n+ 1, n+ 2, · · · , n− r . (61)

Equations-59 and 61 together constitute a set of (2n+ 1) linear equations which
can be solved for the set {pi} and {qi}. With these values for the coefficients,
equation-58 represents a global Padé approximant for the function.

If r > n, then the set of equations from which the unknown coefficients are
to be determined are given by

j∑
i=0

aj−i qi = pj , j = 0, 1, 2, · · · , n

j∑
i=0

aj−i qi = 0, j = n+ 1, n+ 2, · · · , r

j∑
i=0

bj−i qi = pn−i, j = 0, 1, 2, · · · , 2n+ 1− r. (62)
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It may be mentioned here that for different choice of r one obtains different
global approximants. The value of r for which a global approximant will re-
produce the function over the entire range with maximum accuracy depends, in
general, on the function to be approximated.

If it happens that b0 in the asymptotic expansion given by equation-57 is
zero, so that the first term in the asymptotic expansion is y

(
1
z

)
, then in the

global Padé approximant the order of the polynomial in the denominator should
be higher by one than that of the numerator and the approximant will be [N/N+
1] Padé approximant. The (2n+ 2) unknown coefficients can be determined in
a way similar to that outlined above.

In some situations, as we shall encounter frequently, the asymptotic expan-
sion is given by

f (z) ∼ b−1z + b0 + b1
1

z
+ b2

1

z2
+ · · ·

= b1
1

y
+ b0 + b1y + b2y

2 + · · · . (63)

In such a situation, the global approximant will be a [N/N − 1] Padé approxi-
mant.

The large-z expansion of a function f (z) is not necessarily in the form of
a series in 1/z as we shall encounter later. The method of obtaining global
approximants in such situations will be explained in specific cases subsequently.

Consider the function f (z) =
√
(1 + z2). For small z, one can make the

series expansion

f (z) == 1 +

∞∑
n=1

(−)
n+1 (2n− 2)!

n! (n− 1)! 22n−1
z2n = 1 +

z2

2
− z4

8
+ · · · .

Alternatively, we can write

f (z) = z

√
1 +

1

z2
= z

(
1 +

1

2z2
− 1

8z4
+ · · ·

)
=

1

y
+
y

2
− y3

8
+ · · · .

A very similar set of expansion can be obtained with a simple quantum
mechanical two state system [32] with the Hamiltonian H = σx + λσz, where
σ’s are the Pauli matrices and λ is the coupling constant, For small λ (λ << 1),
the σz term may be treated by perturbation. Alternatively, for large λ (λ >> 1),
the Hamiltonian can be written as H = λ (σz + 1/λ σx), and the σx term can
be treated by perturbation. Considering perturbation up to second order, the
eigenvalues are respectively given by 1+λ2

2 and λ+ 1
2λ and has the same structure

as that of the series considered above.
The global Padé approximant will be of the form [N/N − 1]. It is found

that global approximants, which uses almost equal number of terms of both the
series, better reproduces the function. Two such global Padé approximants for
the function are as follows:
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g[4/3] =
1 + 2z +

5z2

2
+ 2z3 + z4

1 + 2z + 2z2 + z3
,

g[5/4] =
1 +

5z

2
+

15z2

4
+

15z3

4
+

5z4

2
+ z5

1 +
5z

2
+

13z2

4
+

5z3

2
+ z4

.

The maximum error for g[4/3] is about 0.17% and that for g[5/4] is 0.03%.

The large-z expansion of a function f (z) is not necessarily in the form of a
series in 1/z. For example,

ˆ x

0

et
2

dt ∼ 1

2x
ex

2

[
1 +

1

2x2
+

1. 3

(2x2)
2 + · · ·

]
, x→ +∞

ˆ ∞

0

1

1 + xt
dt ∼ lnx

x
, x→ +∞

The method of obtaining a two-point approximants in such situations will
depend on the specific case.

The elliptic integral of the second kind is given by

E(m) =

ˆ π/2

0

(
1−m sin2 θ

)1/2
dθ. (64)

Expanding the integrand, the above integral can be expanded in a power
series in m and is given by

s =
π

2

(
1−

(
1

2

)2
m

1
−
(
1.3

2.4

)2
m2

3
−
(
1.3.5

2.4.6

)2
m3

5
− · · ·

)
. (65)

A global approximant for E(m) can be obtained by noting that E(m) goes
to zero at m = 1 like (1−m)γ , where γ is close to 1. If we choose γ = 9

10 , then
the series for (1−m)

9/10

is

s1 = 1− 9m

10
− 9m2

200
− 33m3

2000
− 693m4

4000000
− · · ·

We form the approximants g[2/2] and g[3/3] with the series s− s1and these
are as follows:

g[2/2] =
0.57079633 + 0.18511797m− 0.31720338m2

1− 0.56444468m− 0.0039050662m2
.
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g[3/3] =
0.57079633− 0.13162639m− 0.44028279m2 + 0.15678251m2

1− 1.11936129m+ 0.27365505m2 + 0.00015442699n3

The sums of the approximants and (1−m)
9/10

will be representations of the
function. The approximants reproduce the function over the entire range fairly
accurately. •◁

3.2 Global Approximants with Levin-like Transforms
To construct a Levin-like transform of order k, one needs k + 1 terms of the
original series. In these transforms β is a free parameter and the first (k + 1)
terms of the series expansion of any of the above transforms of order k agree
with the first (k + 1) terms of the series which are used as input for any value
of β. Thus one can choose the value of β conveniently in different situations so
as to obtain a better representation of the function.

In the global Padé approximant, the order of the polynomial in the numera-
tor may be equal, less than or greater than that of the denominator, depending
on the nature of the asymptotic series. A Levin-like transform of order k gives
an approximant in the form of a rational function of which the orders of the
polynomials in the numerator and denominator are respectively k − 1 and k.
It thus seems that one can construct a global approximant with a Levin-like
transform only for those functions for which the asymptotic expansion starts
with y = 1/z. Another problem with these transforms is that the coefficients
of the polynomials in the numerator and the denominator of the approximants
are nonlinear functions of the coefficients of the series expansion of the function.
With this in mind, we now demonstrate how one can obtain global approximants
for different functions.

If the series is given by equation f (z) =
∑∞

n=0 anz
n and the asymptotic ex-

pansion of the function starts with y = 1/z, then to obtain a global approximant
of order k we start with the series

a0 + a1z + a2z
2 + · · ·+ a′k−nz

k−n + · · ·+ a′kz
k.

Out of the k + 1 terms, needed to construct a transform of order k, the first
k − n terms correspond to the first k − n terms of the usual series expansion of
the function and the primed coefficients of the subsequent terms are still to be
determined from the asymptotic expansion of the function. We now construct
an approximant of order k with the above series, replace z by 1/y and make a
series expansion of the resulting expression about y = 0. The coefficients of y
in this expansion will involve a′’s and equating the first n+ 1 coefficients with
those of the asymptotic expansion of the function one can determine the n+ 1
unknown coefficients. These equations are, in general, nonlinear and can have
more than one set of solution. When one substitutes the values of the a′’s in the
approximant, one obtains a global approximant with a Levin-like transform. It
may so happen that the approximant globally represents the function for more
than one solution set. On the other hand, one can have a solution set with
which the approximant does not globally represent the function.
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Alternatively, as the constant term b0 in the asymptotic expansion-57 is
absent, one can start with the series

b1y + b2y
2 + · · ·+ b′k−n+1y

k−n+1 + · · ·+ b′k+1y
k+1,

where the b’s are the coefficients of the asymptotic series and the b′’s are still
to be determined. One can construct an approximant with the above series
and the orders of the polynomials in the numerator and denominator are equal.
However, the constant term in the numerator will be absent. We now replace y
by 1/z in this approximant, expand it about z = 0 and equate the coefficients
of this with those of the usual expansion of the function. This gives a set of
nonlinear equations in b′’s . Substituting the values of b′’s in the approximant
one obtains a global approximant for the function.

The construction of global approximants with Levin-like transforms is not as
straightforward as in the case of Padé approximants. With Levin-like transforms
there may not be a single successful method, and one has to tailor the global
approximant to the properties of the available expansions. That this should be
possible in most cases is illustrated in [34]

GlobalApproximant for the Integral I (m) =
´∞
0

e−x2−m4x4

dx

Consider the integral I (m) =
´∞
0
e−x2−m4x4

dx which one encounters in a
mechanical model for quantum field theory [33]. Expanding e−m4x4

and inte-
grating term by term one gets

s = 1− 3

4
m4 +

105

32
m8 − 3465

128
m12 + · · ·

where I (m) =

√
π

2
s. The above series is a Stieltjes series and is formally

divergent with zero radius of convergence. The asymptotic expansion for the
integral can be obtained by expanding e−x2

and integrating term by term. The

asymptotic series for
2√
π
I (m) is given by

s1 = 1.022766y − 0.345684y3 + 0.255691y5 − 0.259265y7 + 0.319614y9 − · · ·

where y = 1/m. To obtain a global approximant with the τ -transform, we start
with the series

1.02276567y + a1y
3 + a2y

5 + a3y
6 + a4y

7

and construct a τ -approximant of order 4 and adjust the constants so the series
expansion of the approximant agrees with s. With β = 20 this gives a1 =
−1.611880, a2 = 2.810072, a3 = −1.871834 and a4 = 0.917793. The value of
β is adjusted so that better agreement is obtained over the entire range. The
global τ4-approximant is given by

gτ4 =

√
π

2

(
1 + 2.729969m3 + 2.871267m4 + 1.497256m5

1 + 2.729969m3 + 2.669202m4 + 2.807355m5 + 1.463929m6

)
.

This approximant reproduces the integral over the entire range. •◁
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Figure 5: Figure on the left shows the logarithm (to the base 10) of the absolute
error (LAE) for different interpolants for ex cos (5x). Solid line - τi4; dotted line
- ui4 and the dashed line - r22. Figure on the right shows the plots of ex sec (5x)
and the reciprocal of τi6.

4 Applications to Numerical Analysis

4.1 Interpolation using Levin and Weniger transforms
In numerical computation one often has to approximate functions. The need
arises when a function is known in the form of a table of values and one needs
some closed form of representation so that required manipulations like differenti-
ation and integration can be performed. Another reason for this approximation
could be that the function may be defined implicitly and an analytical expression
is too complicated to evaluate. The most commonly used interpolation methods
are the polynomial interpolations of Newton and Lagrange or interpolation by
continued fraction can be found in [37].

For interpolation with the Levin-Weniger transforms, one faces a set of
nonlinear equations for the coefficients aj ’s and poses a formidable problem.
The problem was solved by the method of successive expansion and multi-point
Levin-Weniger approximants can be obtained [36].

As an example, we consider the function ex sec (5x), which is the reciprocal
of the function e−x cos (5x) and has two poles between (0, 1). The interpolation
formula for e−x cos (5x) using the u and τ -transforms of order 6 are given by

ui6 =
1 + 0.2826x− 10.5612x2 − 14.2329x3 + 48.1575x4 − 24.1517x5

1 + 1.4461x+ 0.6895x2 + 1.8020x3 − 0.2907x4 + 0.08981x5 + 0.0006320x6

τi6 =
1 + 0.1027x− 10.8847x2 − 9.1138x3 + 39.7509x4 − 20.3830x5

1 + 1.2220x+ 0.7312x2 + 1.5271x3 − 0.2241x4 + 0.02596x5 + 0.007901x6
.
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Table 6: Determination of the unstable fixed point of the functional iteration
given by equation-66 using the u2-transform (withωn = ∆Sn).

µ = 1 µ = 2 µ = 3 µ = 4 µ = 5

Seed x
(µ)
1 5.0 0.519 · · · 0.423 · · · 0.42924 · · · 0.4293823 · · ·
x
(µ)
2 9.4 · · · 0.582 · · · 0.419 · · · 0.42915 · · · 0.42938234 · · ·
x
(µ)
3 18.4 · · · 0.694 · · · 0.412 · · · 0.42901 · · · 0.42938228 · · ·
x
(µ)
4 36.3 · · · 0.889 · · · 0.402 · · · 0.42877 · · · 0.42938217 · · ·

Limit 0.519 · · · 0.423 · · · 0.4292 · · · 0.4293823 · · · 0.42938244899455 · · ·

The rational interpolant with the same number of inputs is

r33 =
1− 7.8775x+ 18.8132x2 − 12.2693x3

1− 5.7881x+ 9.7591x2 − 8.1674x3
.

Reciproals of these interpolants give the interpolant for ex sec (5x). Figure- 5
shows the plots of the logarithm (to the base 10) of the absolute error for these
interpolants as well as the function. It may be mentioned that the rational
interpolant r33 gives a pole at about x = 0.25. A plot of the reciprocal of τi6
and ex sec (5x) is also shown in the figure- 5.

One great disadvantage of the rational interpolants is that they give, in some
cases, spurious poles even if the function itself has no pole. For example, the
rational interpolants. R11, R33 and R55 for the function e−x cos 5x predict poles
at 0.284305, 0.264782 and 0.977217 respectively in the range (0,1). As the Padé-
type rational interpolants is unique for a given number of interpolating points,
it is not possible to remove the poles without changing the interpolating points.
For interpolants with Levin-like transforms, the situation is favourable as one
has the free parameter β to remove the poles.

4.2 Finding Roots Using Divergent Iteration
As we have found that we can find the sum of a divergent series using the
convergent accelerating transforms, we can find the root of an equation even
when the functional iteration diverges by using these transforms [38]

Consider the functional iteration

xn+1 =
1

4
ln
(
cosh2 (2xn) cosh (4xn)

)
(66)

The two stable fixed points of this functional iteration are 0 and ∞, there
being an unstable one at 0.42938244899456 . . .. . A trial value less than this
moves towards zero through successive iterations, while a value greater than this
moves towards infinity. However, let us start with an arbitrary initial value of
x
(1)
1 = 5. Then the numbers of the sequence {x(1)n } generated by the iteration

scheme are shown in table-6. The limit at the bottom of each column is the
value obtained by the application of u2-transform (withωn = ∆Sn)on the four
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values in that column. We use this limit as the initial value for the next stage
of iteration. As can be seen from the table , the repetition of this procedure
very quickly leads to the desired fixed point starting from a wide range of initial
values. In the present case five successive applications of the procedure enables
one to determine the unstable fixed point to the limit of available precision (to
14 digits in the present case). The number of successive applications of the
procedure needed to obtain the limit depends, to some extent, on the initial
choice of the seed.

4.3 Numerical Integration and Convergence Accelerating
Transforms
The Riemann sum (mid-point rule) for an integral is defined as

ˆ b

a

f (x) dx ≈ Rn = h

n−1∑
r=0

f

(
a+ (2r + 1)

h

2

)
(67)

where h =
(b− a)

n
. One can, however, define the sequence in a number of

other ways. For example, instead of the midpoint rule one can use the simple
Riemann sum. If the convergence is too slow, one can apply the iteration of the
the transforms to obatin an accurate result.

EvaluatingHighlyOscillating Integrals
Consider another integral

I =

ˆ ∞

−∞
sin
(
x2 + x

)
dx = 0.904276756189027. (68)

We divide the integral into two parts as follows:

I = I ′ + I ′′ =

ˆ 0

−∞
sin
(
x2 + x

)
dx+

ˆ ∞

0

sin
(
x2 + x

)
dx. (69)

The zeros of the integrand are given by the roots of the equating x2+x−nπ = 0
and are as follows:
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Roots for x ≤ 0 Roots for x ≥ 0
n x n x
0 0 0 0
1 -1.0 1 1.34162772
2 -2.34162772 2 2.05600965
3 -3.05600965 3 2.61043051
4 -3.61043051 4 3.07999590
5 -4.07999590 5 3.49471953
6 -4.49471953 6 3.87030387
7 -4.87030387 7 4.21605222
8 -5.21605222 8 4.53812874
9 -5.53812874 9 4.84081772
10 -5.84081772 10 5.12724858

We can now integrate between successive zeros and as the integrand is os-
cillating these alternate in sign. The values of the integral between successive
zeros for x ≤ 0 are

-0.16547919 0.79441336 -0.45220196 0.35222622 -0.29861682
0.26386470 -0.23898612 0.22004145 -0.20499203 0.19266241

and those for x ≥ 0 are

0.79441336 -0.45220196 0.35222622 -0.29861682 0.26386470
-0.23898612 0.22004145 -0.20499203 0.19266241 -0.18232071

The partial sums of these forms sequences and results of applying the τ−transform
(with β = 0) of different orders on the sequences are as follows:

tr. ord. 2 3 4 5 6 7
x ≤ 0 0.189 0.329 0.3622 0.3681 0.36917 0.369359
x ≥ 0 0.534 0.535 0.5349 0.5349 0.53487 0.534878
Total 0.723 0.864 0.8971 0.9030 0.90404 0.904237

Using twenty partial sums one can evaluate the integral accurate up to twelve
significant digits. •◁

4.4 Definite integrals involving parameters
Consider the example

g (a) =

ˆ a

0

tanxdx (70)

where a has a value close to
π

2
. It is difficult to evaluate this integral by any

standard quadrature when a is close to
π

2
, as the integrand increases rapidly

near
π

2
and goes to infinity at

π

2
. Though the integrand is continuous over
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the range for any value of a (a < π
2 ), the singularity at π

2 results in a very slow
convergence. In fact, the evaluation of tanx close to the singularity will involve a
significant round-off error and a slight error in calculating the abscissas will cause
a significant error in the function values. It is well known that an approximant,
built from a series expansion of the function, reproduces the function better
near the point about which the expansion is made. As the integrand has very
large value near

π

2
, the integral will be better evaluated if we approximate the

integrand by a series or an approximant which reproduces it better near π
2 . We,

thus, make a Laurent expansion of tanx and is given by

tanx =
1(

π
2 − x

)−(π2 − x
)

3
−
(
π
2 − x

)3
45

−
2
(
π
2 − x

)5
945

−
(
π
2 − x

)7
4725

−
2
(
π
2 − x

)9
93555

−. . .

(71)
Integrating equation-71 term by term we get

ˆ
tanxdx = − ln

(π
2
− x
)
+

(
π
2 − x

)2
6

+

(
π
2 − x

)4
180

+

(
π
2 − x

)6
2835

+ . . .

Putting the limits we have

g(a) =

ˆ a

0

tanxdx ≈ ln

(
π

(π − 2a)

)
+

1

6

((π
2
− a
)2

−
(π
2

)2)
+

1

180

((π
2
− a
)4

−
(π
2

)4)
+

1

2835

((π
2
− a
)6

−
(π
2

)6)
+ . . . (72)

This series is highly convergent for values of a near
π

2
and a few terms of the

series is good enough to reproduce the integral up to a few decimal places. If
we leave aside the first term and form an approximant of order 2 with the τ -
transform (β = 0) and then put the limits, we obtain the following expression
for the integral

ˆ a

0

tanx dx = ln

(
π

(π − 2a)

)
+

1890(π2 − a)2 − 97(π2 − a)4

4
(
2835− 240(π2 − a)2 + 2(π2 − a)4

)
−

1890(π2 )
2 − 97(π2 )

4

4
(
2835− 240(π2 )

2 + 2(π2 )
4
)

= ln

(
π

(π − 2a)

)
− 0.4515349995

+
1890(π2 − a)2 − 97(π2 − a)4

4
(
2835− 240(π2 − a)2 + 2(π2 − a)4

) (73)
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Table 7: Values of the integral
´ a
0
tanxdx obtained from equation-72 and those

obtained by the τ2-approximant given by equation-73 .
a exact value eqn. 72 eqn. 73

0.5 0.130584 0.121969 0.130567
0.7 0.268086 0.258066 0.268106
0.9 0.475424 0.464717 0.475489
1.1 0.790548 0.779533 0.790604
1.3 1.318640 1.307544 1.318693
1.5 2.648784 2.637678 2.648832
1.57 7.135501 7.124395 7.135549

It is seen from table-7 that the expression given by 73, which uses only
three terms of the direct series excepting the first term, is a much fairly good
representation of the integral.. One advantage of the approaches discussed here
is that one obtains an expression for the integral in a closed form in terms of the
parameter a and this may greatly simplify the manipulation with the parameter.

Approximate closed form for Bose-Einstein and Fermi-Dirac integrals us-
ing Levin-like transforms has been developed by Bhagat et, al [39] . These
are utilized to obtain closed form expressions for generalized Bose-Einstein and
Fermi-Dirac integrals. With these expressions it is possible to obtain values for
the integrals to an accuracy of 5 to 8 significant digits with low order trans-
forms, the added advantage being that these results are amenable to analytic
manipulations.

4.5 Summing a Fourier Series
One needs a large number of terms to evaluate a periodic function by directly
summing the Fourier series corresponding to the function. We have already men-
tioned that the nonlinear sequence transforms can find the limit of a sequence
of complex numbers. This is well illustrated by summing a Fourier series by a
nonlinear sequence transform.

Let us consider a periodic function

f (x) = x, 0 < x < 1

= (x− 2) 1 < x < 2. (74)

The Fourier series expansion of the function is given by

f (x) =
2

π

∞∑
n=1

(−)
n+1 sin (nπx)

n
(75)

We note that
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Figure 6: τ3-approximant along with the direct sum of 20 terms of the series
given by equation- 75 for the function given by equation -74.

f (x) = Im

[
2

π

∞∑
n=1

(−)
n+1 e

inπx

n

]

= Im

[
2

π

∞∑
n=1

(−)
n+1 y

n

n

]
= Im

[
2

π
S

]
(76)

where y = eiπx and S =
∑∞

n=1 (−)
n+1 y

n

n
.

This is because sin θ is the imaginary part of eiθ. The infinite series S can
be summed by some suitable transform and this gives a representation of S as a
rational function in term of y. The imaginary part of this multiplied by 2

π gives
a representation of f (x). The τ -transform of order 3 (with β = 0), which needs
only four terms of the series, gives

f (x) ≈ τ3 =

(
2

π

)
2760 sin (πx) + 1554 sin (2πx) + 520

3 sin (3πx)

4841 + 6300 cos (πx) + 1548 cos (2πx) + 80 cos (3πx)
(77)

It may be remarked that the sum given by equation-75 is the imaginary part
of the series for S. Now S = ln (1 + y) = ln (1 + cosπx+ i sinπx). Extracting
the imaginary part of this and multiplying by 2

π , one gets

f (x) =
2

π
tan−1 sinπx

1 + cosπx
=

2

π
tan−1 tan

πx

2
.

Figure-6 shows the function and τ3 approximant along with the direct sum
of 20 terms of the series given by equation-75.

It is seen from the figure that τ3 with only 4 terms reproduces the function
remarkably well over the entire range. To have an idea of the accuracy with
which the function is reproduced, we present in table-8 the values of the function
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Table 8: Values of the function given by equation-74 using τ3 and τ4 along with
the absolute relative error.

x τ3 absolute τ4 absolute
rel. error rel. error

0.1 0.100004402 4.4×10−4 0.10000172 1.7×10−5

0.2 0.20003128 1.6×10−4 0.19999928 3.6×10−6

0.3 0.29995055 1.6×10−4 0.29999722 9.3×10−6

0.4 0.39989435 2.6×10−4 0.40000404 ×10−5

0.5 0.50006776 1.4×10−4 0.50000538 1.0×10−5

0.6 0.60045653 7.6×10−4 0.59996774 5.4×10−5

0.7 0.69964224 5.1×10−4 0.70005904 8.5×10−5

0.8 0.79604379 4.9×10−3 0.80010749 1.3×10−4

0.9 0.92790777 3.1×10−2 0.89776638 ×10−3

0.95 0.98626653 3.8×10−2 0.99041719 4.3×10−2

1.0 0 0

obtained by the τ3 and τ4 approximants for some specific values of x along with
the absolute relative error. It can be seen from the table as well as from figure-6
that the function is very well reproduced except at points very close to the point
of discontinuity. At the points of discontinuity, all the transforms give the mean
value zero at that point. To achieve higher accuracy one can use transforms of
higher order. •◁

4.6 Solution of Differential Equations
Numerical solution of differential equations is a vast field. Many problems in
engineering and science can be formulated in terms of differential equations. A
differential equation involving the relation between a function and one or more
of its derivatives can be formally written as

y(n) = f
(
x, y (x) , y′ (x) · · · y(n−1) (x)

)
(78)

where y(n) (x) is the n-th derivative of y (x). As the order of the highest deriva-
tive involved in the above equation is n, the above equation is a differential
equation of order n. Differential equations are classified as linear or nonlinear.
If the function f in equation-78 involves y and its higher derivatives linearly,
then the equation is said to be a linear one. Though it is easier to handle the
linear equations analytically, from a view point of solving them numerically both
the linear and nonlinear equations can be treated on the same footing.

The general solution of equation-78 will, in general, contain n arbitrary
constants and consequently there exists an n-parameter family of solutions.
If the values of y (x) , y′ (x) · · · y(n−1) (x) are prescribed at x = x0, we have
an initial value problem. If, on the other hand, conditions are specified at
more than one points it is known as a boundary value problem. The boundary
conditions of an equation may be linear or nonlinear For example, the equation
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y′′ (x)+y = 1 with the boundary conditions y′ (0) = y (0)
2 and y

(
3π
2

)
= 0 is an

example of a linear equation with nonlinear boundary conditions and has two
solutions y (x) = 1 + sinx and y (x) = 1 + sinx − 2 cosx and we shall discuss
this subsequently.

There exists a large number of methods for numerically solving differential
equations. Any method of solving a first order equation is equally applicable to
a higher order equation. This is because of the fact that an equation of order n
can be rewritten as a system of n first order equations.

Thus, without any loss of generality, we shall mostly confine our discussion
on first order equations of the form

y′ (x) = f (x, y) , y (x0) = y0 (79)

where the function f may be linear or nonlinear, but it is assumed that f is
sufficiently differentiable with respect to both x and y.

The Taylor series method consists of approximating the solution by a trun-
cated Taylor series in the neighborhood of some initial point x0, where the initial
value is known. Successive differentiation of the given differential equation is
used to generate the necessary derivatives. A new Taylor series can then be
constructed about x1 = x0 + h. This process generates the solution along the
path (x0, x1, x2 · · ·). If y (x) be the exact solution of the equation-79, then to
find the value of y (x) at a point near xi, a Taylor series expansion of y (x) about
xi can be written as

y (x) = y (xi) + (x− xi) y
′ (xi) +

(x− xi)
2

2!
y′′ (xi) + · · ·

++
(x− xi)

n

n!
y(n) (xi) + · · · (80)

where y′ and y′′ etc. are the total derivatives of y evaluated at xi. Remembering
that y (x) is not known explicitly but y′ (x) = f (x, y ) is known and keeping in
mind that f is sufficiently differentiable one can express the total derivatives of
y in terms of the partial derivatives of f , i.e.,

y′ = f

y′′ = f ′ = fx + fyy
′ = fx + fyf

y′′′ = f ′′ = fxx + 2fxyf + fyyf
2 + fxfy + f2y f

and so on, where fx, fy, fxy etc. are the partial derivatives of f . If y (x) is known
at x = x0 and if we assume that the truncated series is a good approximation
for a step length h, where h = x− x0, then we can evaluate y (x0 + h) from the
equation

y (x0 + h) = y (x0) + hTk (x0, y0) (81)

where

Tk (x0, y0) = f (x0, y0) +
h

2!
f ′ (x0, y0) + · · ·+ h(k−1)

k!
f (k−1) (x0, y0) (82)
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Table 9: Expressions obtained by using different transforms.
transform expressions

used

[1/1] yn+1 = yn + h
2fn

2− h
f ′n
fn

u2 yn+1 = yn + h
(2fn − hf ′n)

(2− 2h
f ′n
fn

+ h2
f ′n
yn

)

τ2 yn+1 = yn + h
(6fn − hf ′n)

(6− 4h
f ′n
fn

+ h2
f ′n
yn

)

We can now proceed for the next step. Continuing in this manner we obtain
a set of discrete values of yn = y (x0 + nh) which are approximation for the true
solution at the points xn = x0 + nh. Formally we can write

y (xn+1) = y (xn) + hTk (xn, yn) (83)

As we already know that the sum of an infinite series, of which only a few
terms are known, can be best approximated by using the nonlinear sequence
transforms. If we calculate only one derivative of f (x, y), then three terms of
the series are known and we can employ the different nonlinear transforms on
these three terms to obtain formulas for the numerical solution of a first order
differential equation using Levin-Weniger transforms [90] of order 2 or [1/1]
Padé approximant. These are shown in table- 9. As u2 and y2 transforms are
equivalent and so are τ2 and t2 transforms, we show the formulas obtained with
u2 and τ2 transforms. If the two derivative of f (x, y) can be calculated then
transforms of a higher order can used to obtain the solution and these as well
are shown in table- 9.

Consider the differential equation y′ = 1 + y2 with the initial condition
y (0) = 1, for which the exact solution is y (x) = tan

(
x+ π

4

)
. Any standard

linear method will not be able to find the solution of the equation for x ≥ π/4.
Figure-7 shows the the numerical solution along with the exact result.

Let us consider the differential equation

y′ = λ1y + eλ2x

. This equation has the general solution

y (x) =
eλ2x

λ2 − λ1
+ ϵeλ1x,
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Figure 7: Solution of y′ = 1 + y2 using τ2-approximant.

where ϵ is a constant. If we now use the boundary condition y(0) = 1/ (λ2 − λ1),
one obtains ϵ = 0. However, if in any numerical method of solution there is
even a small error in implementing this boundary condition, the term ϵeλ1x

will ultimately dominate. This ill-conditioning generates a solution completely
different from the one sought. We demonstrate this with the choice λ1 = 9 and
λ2 = −1. More specifically, we consider the differential equation

y′ = 9y + e−x, y (0) = − 1

10

the general solution for which is given by y (x) = − e−x

10 . Using Runge-Kutta
method of order 4 and with different step size, it is found that the method
becomes unstable after a certain value x depending on the step size. A decrease
in the step size shifts the instability to a larger value of x. A similar feature is
present in the solution with formulas using the nonlinear transforms, the only
difference being that the instability is shifted to a larger value of x on increasing
the order of the transform. Figure- 8 shows y (x) obtained by τ8 approximant
along with exact result. The figure also shows the solution obtained by Runge-
Kutta method of order 4 with step size 0.01 and 0.001 .

One natural question that arises is that, if one takes the pain the calculating
a few derivatives, is not it possible to form an approximant of higher order which
approximates the true solution upto a reasonable value of x ? To check this we
calculate nine terms of the Taylor series and form the τ−approximant of order
8 (with β = 0) which is given by

τ8 =
−1

10

 1− 7x

15
+
x2

10
− x3

78
+

x4

936
− x5

17160
+

x6

514800
− x7

32432400

1 +
8x

15
+

2x2

15
+

4x3

195
+

x4

468
+

x5

6435
+

x6

128700
+

x7

4054050
+

x8

259459200


Boundary valueproblem
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Figure 8: Solution of the differential equation y′ = 9y + e−x by Runge-Kutta
method of order 4 with step sizes 0.01 and 0.001. The solid line represents the
solution obtained with τ8.

Let us now consider the boundary value problem

y′′ + k2y = 1; y (0) = 0, y (1) = 0

The exact solution for the problem is given by

y (x) =
1

k2
+

(cos k − 1) sin (kx)

k2 sin k
− cos (kx)

k2

If we take k = 3.141 and k = 3.142, the solutions are entirely different as these
values lie on opposite sides of π as may be seen from the figure-9 . It is for
this reason that any error incurred at some intermediate point may lead to a
completely wrong solution and this is true for any numerical prescription. Let us
demonstrate how, by using the convergence accelerating transforms, we obtain
a solution with much ease.

As in the "shooting" process, we start with the initial value problem

y′′ + k2y = 1; y (0) = 0, y′ (0) = α

and obtain the series

y (x) = αx+
x2

2
− αk2x3

6
− k2x4

24
+
αk4x5

120
+
k4x6

720
− αk6x7

5040
− k6x8

40320
+

+
αk8x9

362880
+

k8x10

3628800
−− αk10x11

39916800
− k10x12

479001600
+ · · ·
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Figure 9: Solution of the differential equation y′′ + k2y = 1with the boundary
conditions y (0) = 0 and y (1) = 0 using the τ5 transform (dashed curve) along
with the exact solution {solid line). The lower curve corresponds to k = 3.141
and the upper one corresponds to k = 3.142.

Here also the successive pairs of terms of the series alternate in sign. As in the
previous example, we consider the sum of approximants obtained separately for
series constructed out of the even and odd numbered terms as representation of
the solution and the one obtained with τ -transform of order 5 is given by

τ5 =

x2

2
− 37k2x4

1188
+

269k4x6

427680
− 139k6x8

31434480
+

19k8x10

2155507200

1 +
25k2x2

1188
+

5k4x4

21384
+

5k6x6

2794176
+

k8x8

100590336
+

k10x10

30177100800

+

αx− 14αk2x3

99
+

29αk4x5

6480
− 449αk6x7

10478160
+

(17αk8x9

167650560

1 +
5k2x2

198
+

5k4x4

14256
+

5k6x6

1397088
+

k8x8

33530112
+

k10x10

5029516800

If we now assign to k any one of the two values mentioned and force the
approximant to be zero at x = 1, the approximant gives a linear equation for α
and consequently can be easily solved. With the τ5-approximant, the values of
α, corresponding to k = 3.141 and 3.142 are respectively given by −1075.5245
and 1560.2348. Figure 9 shows the plots of the τ5-approximant with k = 3.141
and 3.142 along with the exact solution. If one has to solve the equation by the
shooting method for values of k close to π, one will face instability, as the value
of the initial slope changes drastically as one crosses π. The values of α for
k = 3.1415 and 3.1416, as obtained from the τ5-approximant, are respectively
−6918.03 and 79834.30, the exact values of the initial slopes being −6871.17 and
86657.1. Thus the same τ5-approximant will fairly represent the solutions of the
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(a) NaCl (b) CsCl

Figure 10: First Evjen cell for NaCl and CsCl lattices.

equation with these values of k as well. A better representation can obtained
with a higher order approximant.

At this point one may ask - how to know to the order of the transform?
This can be judged by comparing two approximants of successive orders. If
they agree within a reasonable accuracy, then either of them can be considered
as a reasonable approximant. For example, τ5-approximant with k = 3.141 and
x = 0.5 gives the value −342.3133 and the τ6-approximant gives −341.9548.
For k = 3.142 the corresponding values are 496.6751 and 497.4347. With τ5-
approximant the error over the entire range is about 0.15 percent. •◁

5 Applications to Physical Problems

5.1 Evaluation of Lattice Sums
The problem of evaluating lattice sums is frequently encountered in condensed
matter physics. The problem of determining the electrostatic potential within
a lattice of point charges is made particularly difficult due to the fact that
these sums are slowly and conditionally convergent. A number of methods have
been proposed for evaluating them. The classical methods for the evaluation of
Madelung sums are those of Evjen [40] and Ewald [41] and these are reviewed
in the review article by Tosi [42].m. There exist a number of modifications
and refinements of the Evjen and Ewald procedure and these are extensively
discussed in the review article by Glasser and Zucker [44]. However, none of
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these methods has really made the evaluation of lattice sums as simple as might
be expected. This is because of the fact that most of these methods, except
perhaps the Evjen method, express the lattice sums in terms of tabulated func-
tions. In the study of stability of a particular lattice, one needs to know the
value of lattice sums for competing structures, for which the sums may be very
nearly equal and the difference between the sums may be of the same order as
the error arising from rounding-off numbers or truncating sums; thus the need
arises for an accurate evaluation of lattice sums.

A direct method of evaluating the lattice sums was proposed by Bhowmick,
Roy and Bhattacharya [43]. The method consists in accelerating the contribu-
tion of different neighbours to the lattice sum in some sequential order, such
that the limit of the virtually infinite sequence is the desired lattice sum and
apply the convergence accelerating transforms on this sequence. This method
permits the evaluation of lattice sums with a high degree of precision as will be
illustrated below.

5.1.1 Madelung sums for NaCl and CsCl lattices

We define the Madelung constant as

α =

′∑ (−1)m√
m2

1 +m2
2 +m2

3

(84)

where m = m1 +m2 +m3.
For NaCl lattice (m1,m2,m3) run over all integer values and for CsCl lattice

(m1,m2,m3) are either all odd or all even. The prime over the summation
implies that the term for which m1 = m2 = m3 = 0 is excluded from the sum.
One can build the sequence for the lattice sum in a variety of ways. For example,
we can sum over expanding cubes to build the sequence. Alternatively, we can
build the sequence by summing over expanding cubes which are electrically
neutral and this is basically the Evjen sequence.

It may be remarked that a very rapidly convergent series for the Madelung
sum of NaCl lattice was discovered by Benson et. al. [45] using a physical argu-
ment and was proven analytically by Mackenzie [46] and is given by

α = −12π

∞∑
m,n=1(odd)

sech2
(π
2

(
m2 + n2

))
. (85)

The above sum is highly convergent. For example, only the first term of the
series gives α = −1.73267. Considering terms up to m = 5 and n = 5, it gives
α = −1.74756451, which is correct up to eight significant digits. A similar type
of expression for CsCl structure was given by Benson et. al. [47]. Extension to all
rhombohedral lattices was made by Mackenzie [48]. Though the Madelung sum
for NaCl and CsCl lattices can be expressed as very rapidly convergent series,
this is not true for all slowly convergent lattice sums. However, one can find the
lattice sums, irrespective of whether it can be expressed as rapidly convergent
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Table 10: Iteration of u2-transform (with ωn = ∆Sn) for α(NaCl) using ex-
panding cubes without sharing of charges.
n Sn un,12 un,22 un,32 un,42

1 2.13352 07792 784 1.749.. 1.74756.. 1.74756 4584.. 1.74756 45946
2 1.51664 63362 669 1.7469.. 1.74756 3.. 1.74756 4592..
3 1.91250 39789 592 1.7478.. 1.74756 48.. 1.74756 45947..
4 1.61926 96788 704 1.7474.. 1.74756 44.. 1.74756 45945..
5 1.85253 54904 123 1.7476.. 1.74756 46..
6 1.65874 22894 727 1.74752.. 1.74756 57..
7 1.82454 42337 282 1.74758.. 1.74756 60..
8 1.67964 12454 745 1.75754..
9 1.80833 81857 782 1.74757..
10 1.69257 89282 595 1.74755..
11 1.79776 89192 232
12 1.70137 66038 269
13 1.79033 12603 333

Table 11: Iteration of u2-transform (with ωn = ∆Sn) for α(CsCl) using expand-
ing cubes without sharing of charges.
n Sn un,12 un,22 un,32 un,42

1 4.61880 21535 17 0.95.. 1.0178.. 1.01765.. 1.01768 076
2 -4.93323 96103 61 1.05.. 1.0177.. 1.01768 13..
3 9.34861 09902 38 0.99.. 1.01765.. 1.01768 077..
4 -9.69295 25236 67 1.03.. 1.01769.. 1.01768 076..
5 14.10826 26595 37 1.00.. 1.01767..
6 -14.45291 64752 90 1.02.. 1.01768 4..
7 18.86832 22709 63 1.01..
8 -19.21301 88720 43 1.012..
9 23.62844 57854 21 1.0216..
10 -23.97315 38210 79
11 28.38858 73683 74
12 -28.73329 94699 64
13 33.14873 56230 11

46



series or not, using the convergent accelerating transforms and in the following
section we demonstrate this considering the NaCl and CsCl lattices as prototype
examples for which the sums are known accurately.

Table-10 shows that the Madelung sum for NaCl lattice, where the sequence
is built by summing over expanding cubes without sharing of charge and con-
verge too slowly. It is evident from the table that the Madelung sum can be
reproduced to fourth decimal places by using only seven partial sums. Though
it is not shown in the table, it may be mentioned here that sixteen partial sums
give, with an available precision of 15 digits, the value -1.7475645646332 for the
Madelung sum, which we believe is correct upto 14 significant digits.

It is interesting to observe that the sequence obtained by using cubic blocks
without sharing of charges in the case of CsCl is formally divergent as is evident
from table- 11. The value obtained by the sequence to sequence transforms is
exactly the value obtained by using analytic continuation in a complex plane. It
is seen from table-11 that the successive iterates of this formally divergent series
approaches the Ewald sum for CsCl. The number of terms of the sequence that
is needed to obtain the value of the limit correct to 14 significant places is 22,
and the value obtained is 1.01768 07547 263.

5.2 Non-linear Simple Pendulum
The differential equation of a free undamped simple pendulum is given by

d2θ

dt2
+
g

l
sin θ = 0 (86)

where θ is the angular displacement from the equilibrium position, l is the
length of the pendulum and g is the acceleration due to gravity. The equation
is nonlinear due to presence of the term sin θ.

The common approach is to linearise the equation by replacing sin θ by θ.
For the nonlinear equation, one can obtain an expression for the time period of
the pendulum in terms of elliptic functions and the problem is shifted to that
of evaluating the function which is expressed in terms of a definite integral.
There are other approaches approximating nonlinear systems. The most com-
mon and widely used method for tackling nonlinear systems is the perturbation
method [49] and different authors [50-57] have used this method and other sim-
ple pedagogic approach to the nonlinear simple pendulum. Another approach
for obtaining analytical approximation to periodic solution of the differential
equation is the harmonic balance method [58-59]. Recently Belendez et. al [60]
has used this technique to obtain analytic approximate expressions for the pe-
riod of the pendulum for large amplitude. We shall see presently that one can
obtain analytic expressions for the period of the nonlinear pendulum which are
very accurate and is better than those obtained by other methods .

If the pendulum is displaced through an angle θ0 and then released, the initial
conditions are given by θ (0) = θ0 and

(
dθ
dt

)
t=0

= 0 and θ0 is the amplitude of
oscillation. If one linearise the equation by replacing sin θ by θ, it can be easily
solve and the solution is θ = θ0 cosωt where ω =

√
g
l and the time period is

47



given by T0 = 2π
√

l
g . To obtain the time period of the nonlinear pendulum, we

multiply equation-86 by dθ
dt and integrate with respect to t to get(
dθ

dt

)2

− 2g

l
(cos θ − cos θ0) = 0 (87)

where we have used the boundary condition θ = θ0 at t = 0. Integrating once
more from θ = 0 to θ0 yields√

2g

l
τ =

ˆ θ0

0

dθ√
(cos θ − cos θ0)

=

ˆ θ0

0

dθ
√
2
√

sin2 θ0
2 − sin2 θ

2

(88)

This is 1
4 of a cycle and therefore τ is 1

4 of the time period. Trying the half-angle
substitution sin θ

2 = sin θ0
2 sinϕ, we get

T = 4

√
l

g

ˆ π/2

0

dϕ√
1− sin2 θ0

2 sin2 ϕ
= 4

√
l

g
K (m) . (89)

K (m) is the elliptic integral of the first kind and is defined as follows

K (m) =

ˆ π/2

0

dϕ√
1−m sin2 ϕ

(90)

where m = sin2 θ0
2 . For m = 1, the integrand goes to infinity at the upper limit.

To obtain the behavior of the integral near m = 1, we change the variable θ to
π
2 − θ and write

K (m) =

θ0ˆ

0

dθ√
1−m cos2 θ

+

π/2ˆ

θ0

dθ√
1−m cos2 θ

≈
θ0ˆ

0

dθ√
(1−m) +mθ2

+

π/2ˆ

θ0

dθ

sin θ

where θ0 is so chosen that θ20 is very large compared to (1−m) but very small
compared to 1 and obtain

K (m) = ln
θ0 +

√
(1−m) + θ20√
(1−m)

− ln tan
θ0
2

≈ ln
2θ0√
(1−m)

− ln
θ0
2

= ln
4√

1−m
=

1

2
ln

16

(1−m)

We now subtract the series for 1
2 ln

16
(1−m) from the series for K (m) and

considering only three terms of the series construct τ2 approximant and add
1
2 ln

16
(1−m) to obtain a global approximation for K (m) [ 34].

gτ2 =
π

2

(
0.117458− 0.110792m

1− 0.361684m− 0.0525862m2

)
+

1

2
ln

(
16

1−m

)
. (91)
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Table 12: T
T0

at different amplitude of oscillation.
θ gτ2 exact θ gτ2 exact
10o 1.0019076 1.0019072 30o 1.0174087 1.0174088
50o 1.049773 1.049784 70o 1.102086 1.102145
90o 1.18018 1.18034 110o 1.29519 1.29534
130o 1.4705 1.4698 150o 1.7659 1.7622
170o 2.4487 2.4394 172o 2.5900 2.5801
174o 2.772 2.762 176o 3.030 3.019
178o 3.471 3.460 179o 3.912 3.901

Table-12 shows the values of T
T0

for various amplitudes obtained by using the
approximant given by equation-91 along with the exact value. It is seen that
the simple expression represents T

T0
over the entire range with fair accuracy.

5.3 Excluded Volume Problem in Polymer
Macro-molecules are molecules with very high molecular weights and include
cellulose, proteins, starch and many other molecules that are polymerized from
monomers. Their wide variety of sizes and shapes make them suitable for the
basic ingredients in living as well as inanimate objects. When a chain polymer
is made to float in a supporting medium, its shape depends on the molecu-
lar weight, its repeating units, the temperature and the solvent. Such an ob-
ject has overall geometrical properties, such as a characteristic radius, which
are directly associated with the directly measurable physical properties of the
macro-molecules in the dilute solution. For instance, the small angle scattering
of light or x-rays gives direct information about the radius of gyration of the
scattering molecules. It is well known that the presence of polymeric molecules
in small concentration has a dramatic effect on the viscosity of the solvent and
this can be explained with the simple assumption that each macro-molecular
globule behaves as a non-draining sphere, within which the solvent molecules
are entrained. It has been experimentally confirmed that the apparent radius of
this sphere, for a given solute and solvent, is a standard multiple of the radius
of gyration found in light scattering on the same solution. All these point to
the fact that a study of the theory of the geometrical properties of a random
coil is of immediate physical interest.

A physical quantity relevant for such a study is the mean-square distance
between the ends of the long polymer chain. If l⃗i is the vector representing the
i-th segment of the chain then

⟨R2⟩ = ⟨

(∑
i

l⃗i

)2

⟩ = ⟨

(∑
i

l2i

)
⟩+ ⟨

∑
i̸=j

l⃗i.l⃗j⟩

where the average ⟨ ⟩ is taken over the ensemble of the allowed chains.
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For a freely rotating chain there is no correlation between the orientations
and one has ⟨l⃗i.l⃗j⟩ = 0 and consequently

⟨R2⟩0 = Nl2 (92)

where l2 is the average squared bond length and N is the number of segments
in the molecule.

Another quantity relevant to the characterization of a configuration is the
radius of gyration S. It is defined as the root mean square distance of the
segments or groups from their common center of gravity. If si be the distance of
the i-th atom from the center of gravity of the chain in a specified configuration,
then

⟨S2⟩0 =
1

N

∑
i

s2i . (93)

It is easy to prove that for large values of N the radius of gyration of a chain
(assigning equal mass to each segments) is related to the end-to-end distance as
follows:

⟨S2⟩0 =
1

6
⟨R2⟩0 (94)

Optical and viscosity experiments confirm quite satisfactorily that the apparent
radius of a macro-molecular globule is proportional to the square root of the
number of segments in the chain. This proportionality remains valid even if one
calculate ⟨R2⟩0 or ⟨S2⟩0 for more complicated molecular chain models only with
a different proportionality constant.

To evaluate ⟨R2⟩0 for more complicated molecular chain models it is conve-
nient to introduce a transformation tensor Ti such that Ti l⃗i = l⃗i+1. In other
words, Ti rotates the i-th segmental vector l⃗i into the direction of its successor.
In can be shown that for a free rotation model with a fixed bond angle θ

⟨R2⟩ = 1 + ⟨cos θ⟩
1− ⟨cos θ⟩

Nl2 (95)

where ⟨T⟩ = ⟨cos θ⟩.
The configuration of a chain molecule has a close analogy with the random

flight or walk, consisting steps of fixed length. However, they differ in a most
important respect; whereas a random flight may cross its own path, a chain
molecule is obviously forbidden from doing so. Out of the total number of ran-
dom walk configurations only a fraction will be altogether free of self-intersection
and consequently acceptable configuration for a real chain molecule. As a con-
sequence of retention of only the non-intersecting configuration to the exclusion
of all others, the average spatial configuration of the real molecule is perturbed
relative to its random flight analog and the average dimension of the chain (i.e.,
⟨R2⟩0 and ⟨S2⟩0 are increased.

The problem of spatial configuration of a macro molecule separates into
two fairly distinct parts. One of them deals with the bond structure and local
interactions between atoms or groups which are near neighbors in sequence along
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the chain and is referred to as the short range interaction. The mean square
end-to-end distance of a polymer chain with short range interference may be
expressed in the form

⟨R2⟩ = ⟨R2⟩0 σ2
R (96)

where ⟨R2⟩ is the mean square end-to-end distance of the freely rotating state
and σR, is referred to as the conformation factor, represents the effect of steric
hindrances to internal rotations, a special case of which is given by equation-95.
This conformation factor depends generally on the temperature and sometimes
on the solvent, while ⟨R2⟩0 is a geometrical quantity independent of thermody-
namic variables. For high molecular weight polymers of ordinary interest ⟨R2⟩0
is proportional to N , but σR is independent of N and therefore the Markoff
nature of the chain is still preserved. It may be mentioned here that one can
define a similar quantity σS related to the radius of gyration ⟨S2⟩ and have
properties very similar to σR.

The excluded volume effect, on the other hand, represents the effect of in-
teraction between the segments which are far apart along the chain and is often
called the "long range interaction" in contrast to the "short range interaction"
due to steric hindrance. In real polymers, the nature of the long range interac-
tion may also involve other specific interaction mediated by solvent molecules.
Starting with the work of Flory [61, 62] a large number of methods [63-67] ex-
ist in the literature to account for the excluded volume effect. Once the long
range interaction is introduced, the exact calculations becomes impossible and a
great deal of effort has been expended on working out the valid approximations.
When the long range effect is taken into account ⟨R2⟩ is no longer proportional
to N but to a higher power of N , i.e.,

⟨R2⟩ ∝ N2ν , ν < 1. (97)

The exponent ν is about 3/5, so that the excluded volume effect is important
in long chains.

In the model used by Flory, the polymer molecule is regarded as a continuous
cloud of segments distributed about the molecular center of the mass. For this
model, the expansion factors σR and σS cannot be distinguished from each other
and we represent them by the common symbol σ.

Using thermodynamic argument [61] it can be proved

σ5 − σ3 = CN1/2 (98)

and represents the relationship between the length N of a polymer chain and its
expansion factor σ under the influence of the mutual exclusion of its segments
and its referred to as the Flory’s formula. Stockmayer [68] recommended an
adjustment of the constant on the right hand side of equation-98 so that it
correctly reproduces the first order perturbation term given by equation-103
and this gives

σ5
R − σ3

R =
4

3
z (99)
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and a similar expression for σs. In the above, the excluded volume parameter z
is given by

z =

(
3

2π

)3/2(
βN1/2

l3

)
(100)

where β is called the binary cluster integral for a pair of segments and repre-
sents the effective volume excluded to one segment by the presence of another.
Equation-99 is referred to as the modified Flory’s equation.

A number of formulas similar to the Flory’s equation have been suggested by
various authors and a summary of these can be found in the book by Yamakawa
[69]. Of the various formulas which expresses σR in closed form, those predicted
by Buecher [71] and by Yamakawa and Tanaka [72] gives values of σR which are
close to those predicted by perturbation theory and these are respectively given
by

σ4
R − σ2

R =
48

69
z

(
1 +

2

3σ2
R

+
1

4σ4
R

)
(101)

σ2
R = 0.572 + 0.428 (1 + 6.23z)1/2 (102)

Of the various methods which consider the excluded volume effect, the perturba-
tion calculation deserves attention because it represents the exact and standard
theory of the excluded volume effect. The perturbation approach to the problem
was initiated by Teramota [74] and a brief summary of the work being given
in the article by Flory [73] and in the book by Yamakawa [69]. It has subse-
quently been pursued by many workers [70-71]. The perturbation series for the
expansion factor is formally given in the form of an infinite series and is given
by

σ2
R = 1 + a1z + a2z

2 + a3z
3 + · · · (103)

The calculation of the coefficients, though straightforward, is quite tedious.
Some of the coefficients as calculated by Muthukumar and Nickel [75] are as
follows:

a1 = 4/3, a2 = −2.075385396, a3 = 6.296879676

a4 = −25.05725072, a5 = 116.134785, a6 = −594.71663

It is seen that the coefficients increase explosively and the increase is roughly
like nn. It may be mentioned that the above power series has zero radius of
converge.

As we know that the Padé approximants can find the sum of a divergent
series, we can form different Padé approximants with the available terms of
the series given by equation-103 and these are shown in table-13. The plots
for these approximants are shown in figure- 11. It is seen that [2/2] and [2/3]
approximants give bounds to the sum and so also [2/3] and [3/3] but none
of these approximants can be considered as a representation of the function.
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Table 13: Some approximants for the series given by equation-103. For τ ap-
proximants we have used β = 0.
Transform Approximant

used

[2/2]
1 + 6.308z + 7.579z2

1 + 4.975z + 3.021z2

[2/3]
1.+ 7.614z + 12.390z2

1 + 6.280z + 6.092z2 − 1.385z3

[3/3]
1.+ 10.159z + 28.444z2 + 19.288z3

1 + 8.825z + 18.753z2 + 6.304z3

τ4
1.+ 10.43z + 30.75z2 + 23.61z3

1.+ 9.096z + 20.697z2 + 8.59 ∗ z3 − 0.7159z4

τ5
1.+ 14.21z + 66.32z2 + 114.50z3 + 55.79z4

1.+ 12.87z + 51.23z2 + 66.62z3 + 17.28z4 − 0.9217z5

τ6
1.+ 18.093z + 117.365z2 + 329.935z3 + 379.626z4 + 127.667z5

1.+ 16.759z + 97.095z2 + 228.961z3 + 195.38z4 + 34.76z5 − 1.2873z6

[2,2]

[2,3]

[3,3]

bu
mfyt

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5

Figure 11: Conformation factor using different approximants and phenomeno-
logical models. yt - Yamakawa and Tanaka [72]; bu - Buecher [71]; mf - modified
Flory (equation 99). The different τ -approximants by shown by the dashed lines.
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However, the τ5 and τ6 approximants, which use the same number of terms as
the [2/3] and [3/3] Padé approximants, are almost coincident over a wide range
of z and the values predicted by these approximants lie with those predicted by
equations- 99, 101 and 102. A similar result is obtained using the u-transform
as well [76]. Thus by using the Levin-like transforms it is possible to obtain a
good representation for the conformation factor over a wide range even with a
small number of terms of the perturbation series.

5.4 Quantum Harmonic Oscillator
We shall now consider a somewhat less trivial problem of finding the energy
eigenvalues of harmonic oscillator. Though the problem is exactly solvable, we
shall demonstrate that by making use of the Levin-like transforms we can find
the energy eigenvalues much easily. The Schrödinger equation for the harmonic
oscillator is given by

− ℏ2

2m

d2ψ

dx2
+

1

2
kx2ψ = E ψ (104)

and the eigenvalues are E =

(
n+

1

2

)
ℏω where ω =

√
k/m [77]. Introducing

the variables ξ =
√

mω
ℏ x and ϵ = 2E

ℏω , the equation-104 reduces to

d2ψ

dξ2
=
(
ξ2 − ϵ

)
ψ, (105)

and the eigenvalues for this equation are given by ϵ = (2n+ 1). The boundary
conditions for the problem are ψ = 0 for ξ → ±∞. In making a series solution
about ξ = 0 we set ψ′(0) = 0 and ψ(0) = 1 for the solution with even parity.
For the odd solution we set ψ(0) = 0 and ψ′(0) = 1. First few terms of these
series are given by

sev = 1− ϵξ2

2
+

(
2 + ϵ2

)
ξ4

24
+

(
−14ϵ− ϵ3

)
ξ6

720
+(

60 + 44ϵ2 + ϵ4
)
ξ8

40320
−
(
−844ϵ− 100ϵ3 − ϵ5

)
ξ10

3628800

+

(
5400 + 4804ϵ2 + 190ϵ4 + ϵ6

)
ξ12

479001600
+ · · · (106)

sodd = x− ϵx3

6
+

(
6 + ϵ2

)
ξ5

120
+

(
−26e− ϵ3

)
ξ7

5040
+(

252 + 68ϵ2 + ϵ4
)
ξ9

362880
−
(
−2124ϵ− 140ϵ3 − ϵ5

)
ξ11

39916800

+

(
27720 + 9604ϵ2 + 250ϵ4 + ϵ6

)
ξ13

6227020800
+ · · · (107)
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Figure 12: Plot of truncated series for sev with ϵ = 1; solid curve - 15 terms of
the series, dotted curve - 16 terms of the series.

Table 14: First few eigenvalues (ϵ) of different parity for the harmonic oscillator
obtained by equating to zero the u-approximants (β = 0) of different orders on
the series given by equations 106 and 107 evaluated at at ξ = 106.

order of ϵ ϵ
transform even parity odd parity

2 1 3
4 1, 5.1047, 11.2062 3, 7.0227, 11.89
6 1, 5.0007, 9.0501, 3, 7.00002, 10.97

13.65, 23.18 14.48, 22.89
8 1, 5.000002, 9.00009 3, 7, 11.0001, 15.0359

12.9830, 16.78, 22.23 18.00006, 21.62, 38.0071
10 1, 5, 9, 12.99995 3, 7, 11, 14.9997, 19.0606

17.0022, 20.52, 23.47, 32.30 31.38, 57.45

The boundary condition that ψ = 0 for ξ → ±∞ cannot be satisfied by any
polynomial function. If one truncates the series sev and plots it for ϵ = 1 (or
any other eigenvalue with even parity), the curves with odd and even number of
terms will blow in opposite directions as shown in figure-12 and similar behaviour
will be observed for sodd as well. The u2-approximant (with β = 0) built with
the even and odd series are respectively give by the following expressions:

u2ev =
1 +

ξ2

3ϵ
− ϵξ2

3

1 +
ξ2

3ϵ
+
ϵξ2

6
+
ξ4

12
+
ϵ2ξ4

24

(108)

u2odd = x
1 +

3ξ2

5ϵ
− ϵξ2

15

1 +
3ξ2

5ϵ
+
ϵξ2

10
+
ξ4

20
+
ϵ2ξ4

120

(109)

If we now demand that u2ev vanishes at a large distance, say ξ = 106,
then we obtain an equation for ϵ , and solving for ϵ, we obtain the ground state
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Figure 13: First few normalized eigenfunctions obtained with u10(β = 0) along
with the exact eigenfunctions.

eigenvalue. Table-14 shows the eigenvalues obtained with transforms of different
orders. The solution will contain, apart from the approximate eigenvalues, some
complex and negative values as well and we ignore those. As can be seen from
the table that, as the order of the transform is increased, one gets larger number
of eigenvalues, and the lower eigenvalues becomes more and more accurate. If
some eigenvalue is accurate up to eight decimal places, it is shown as an exact
eigenvalue in the table. One may now ask, what about the eigenfunctions?
For approximant of any order, the eigenfunction (un-normalized) is obatined
by substituting the corresponding eigenvalues in the approximant. It is seen
from the table that u10 correctly reproduces the first three eigenvalues at least.
The first three eigenfunctions (both odd and even parity), properly normalized,
along with the exact wave functions are shown in figure-13.

The eigenfunctions corresponding to ground state and the first excited state,
as given by the u2- transform, is obtained by substituting 1 and 3 for ϵ in the
expressions for u2ev and u2odd in equations- 108 and 109 respectively and are
given by

ψ0 ≈ 1

1 +
ξ2

2
+
ξ4

8

(110)

ψ1 ≈ ξ
1

1 +
ξ2

2
+
ξ4

8

(111)

These eigenfunctions are distinctly different from the actual eigenfunctions.
However, a plot of these functions (properly normalised) shows that these fairly
represents the actual eigenfunctions as can be seen from figure-14.

It is well known that, for a harmonic oscillator, the operator (ξ−D) operating
on the eigenfunction ψ for any state gives the next excited state. Thus, if we
operate (ξ −D) on ψ0, we must get the eigenfunction of the first excited state.
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Figure 14: The ground state and the first excited states wave functions (nor-
malised) obtained by the u2-transform (equations-110 and 111) by shown by
the dotted line and the exact wave functions by the solid lines.

If we designate it by ψ(1)
0 we get

ψ
(1)
0 = x

8
(
16 + 8ξ2 + ξ4

)
(8 + 4ξ2 + ξ4)

2 . (112)

It may noted that ψ1 and ψ(1)
0 looks distinctly different although both of them

represents the first excited state and when properly normalised these two qual-
itatively describes the first excited states. One may ask at this point - can we
find the eigenvalue for the first excited state from a knowledge of this eigen-
function? Yes, we can and let us see how. It is evident from equation-105 that
(−D2 + ξ2)ψ/ψ should give the eigenvalue for the corresponding state for any
value of ξ. If we remember that we made the series expansion about ξ = 0
and as such the approximants will better represent the function near the origin.
Thus if one evaluates (−D2 + ξ2)ψ

(1)
0 /ψ

(1)
0 for some small value of ξ one must

get eigenvalue for the first excited state. With ξ = 10−6 one gets eigenvalue for
the first excited state correct to 12 significant digits. One can go on operating
(ξ −D) to get subsequent states. For example, operating (ξ −D) on ψ

(1)
0 one

should get the eigenfunction for the second excited state and is given by

ψ
(2)
0 =

8
(
−128 + 128ξ2 + 232ξ4 + 92ξ6 + 15ξ8 + ξ10

)
(8 + 4ξ2 + ξ4)

3 (113)

and
(
−D2 + ξ2

)
ψ
(2)
0 /ψ

(2)
0 evaluated at ξ = 10−6 gives the second excited state

correct to 11 significant digits. As one goes on repeating the procedure, the
eigenfunctions become less and less accurate and consequently the accuracy of
the eigenvalues obtained in this way decreases. This is not unexpected as one
starts with an approximate eigenfunction and not the exact eigenfunction. The
ground state eigenfunction given by equation-110 and the first three excited
states ψ(1)

0 , ψ(2)
0 and ψ

(3)
0 (properly normalised) fairly represent the states. It
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Table 15: Perturbation series coefficients b(2)n for the quartic anharmonic os-
cillator. Numbers in the parentheses correspond to the powers of 10 for the
coefficients.
n b

(2)
n n b

(2)
n

1 0.75 (00) 2 -1.3125 (00)
3 5.203125 (00) 4 -3.01611328125 (01)
5 2.23811279296875 (02) 6 -1.999462921142578 (03)
7 2.077708948516846 (04) 8 -2.456891772873402 (05)
9 3.256021887746751 (06) 10 -4.781043106012490 (07)

may be remarked that if one repeats the procedure starting with ψ1 one gets
similar results. For example, operating (ξ − D) repeatedly on ψ1 one should
get the eigenfunctions for the second and higher excited states and the eigen-
functions for the second and third excited states obtained in this way are given
by

ψ
(1)
1 =

8
(
−8 + 12ξ2 + 7ξ4 + ξ6

)
(8 + 4ξ2 + ξ4)

2

ψ
(2)
1 = ξ

8
(
−384− 128ξ2 + 120ξ4 + 68ξ6 + 13ξ8 + ξ10

)
(8 + 4ξ2 + ξ4)

3

and the eigenvalues corresponding to these states obtained by the method pre-
scribed above are correct to 15 and 12 significant digits respectively. Thus,
starting with only three terms of the direct series, one can obtain correct values
for a number of states.

5.5 Quantum Anharmonic Oscillators
Anharmonic oscillators serve as simple model systems in many branches of
physics and are also of particular interest as model systems in quantum field
theory.. An overview of the work on anharmonic oscillators before 1980 can
be found in the article by Killingbeck [78] and a number of subsequent refer-
ences can be found in [79, 80, 81, 82-85]. Though seemingly simple, it is not
an easy problem to find the energy spectrum and eigenfunctions of the anhar-
monic oscillators. One of the standard ways of solving the problem is to invoke
perturbation theory. We briefly discuss this in the floowing section.

The anharmonic oscillators are defined by the Hamiltonian

H(m) (γ) = H0 + γx2m, (114)

where
H0 = p2 + x2 (115)
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The cases m = 2, 3, 4 correspond respectively to the quartic, sextic and octic
oscillators respectively. The Rayleigh-Schrödinger perturbation theory for the
ground state energies of the Hamiltonian is given by

E(m) (γ) =

∞∑
n=0

b(m)
n γn, (116)

with b
(m)
0 = 1 for all m. A few coefficients b(2)n for the oscillators are shown

in tables-15 and similar coefficients for b(3)n and b
(4)
n are also available. The

coefficients b(m)
n can be computed with the help of difference equation and is

described in the article by Weniger et. al [79]. The coefficients b(m)
n tend to

infinite for all m as n → ∞. This divergence was confirmed numerically by
Bender and Wu [ 86-88]. and E(2) (γ) diverges quite strongly for every γ ̸= 0.
Presently, we shall consider only the quartic oscillator as the conclusions for
other oscillators are very similar though somewhat difficult.

Ever since the seminal work of Bender and Wu, Rayleigh-Schrödinger pertur-
bation expansion of the an-harmonic oscillators have been textbooks examples
of strongly divergent perturbation series. A large number of works on the sum-
mation of these perturbation series with the help of Padé approximants exist
in the literature. It can be proved that the perturbation series for the quartic
an-harmonic oscillators are Padé summable.

We now show that the divergent perturbation series for the quartic oscillator
can be summed much more effectively by Levin-Weniger transforms. We note
that, apart from the first term, the perturbation series is an alternating one.
Thus, we leave aside the first term and form an approximant with the rest of
the series. Using the perturbation series for E(2) (γ) given by equation-116 the
τ6-approximant (with β = 0) is given by

τ6 = 1+

0.75γ + 24.1935γ2 + 245.396γ3 + 900.827γ4 + 1024.21γ5 + 198.404γ6

1 + 34.008γ + 379.772γ2 + 1669.99γ3 + 2722.63γ4 + 1233.52γ5 + 59.9627γ6
.

(117)
Figure-15 shows the plots of τ4, τ6 and τ8 along with the exact eigenvalues.

The figure also shows the plots of [3/4] and [4/4] Padé approximants. It is
evident that the τ -transform can sum the series much more effectively.

However, the eigenvalues can be determined much more efficiently by using
the re-normalized perturbation series. For large values of the coupling parameter
it is better to use the strong coupling expansion. Using Symanzik scaling it can
be shown that E(m) (γ) possesses also a strong coupling expansion which is
convergent:

E(m)(γ) = γ
1

m+1

∞∑
n=0

K(m)
n γ

−2n
m+1 (118)

where K(m)
n are the coefficients of the strong coupling expansion. As equation-

117 is a power series in γ and the above strong coupling expansion is a power
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Figure 15: Ground state energy (GE) of the quartic an-harmonic oscillator vs
γ. Solid line -exact; dotted curves - τ -transforms of orders 4, 6 and 8 (β = 0);
dashed curves - [3/4] and [4/4] Padé approximants.

in γ−
2

m+1 and these two expansions have incompatible variables and cannot be
used for constructing two-point approximant which will be valid over the entire
range.

It is obvious that the energy eigenvalues of the an-harmonic oscillators can be
efficiently computed if the asymptotic behavior can somehow be incorporated
into the perturbation scheme. This is accomplished with the help of the re-
normalization scheme of Vinette and Cizek [91]. The re-normalized Hamiltonian
can be written

H(m)(κ) = (1− κ)−1/2

[
p2 + x2 +

κ

Bm

(
x(2m) −Bmx

2
)]

= (1− κ)−1/2Hm
R (κ) (119)

where Bm = m(m−1)!!
2m−1 and the re-normalized coupling constant k is related

to γ through the equation γ = 1
Bm

κ

(1−κ)
(m+1)

2

. The energy can be written as

Em
R (κ) =

∞∑
n=0

c(m)
n κn (120)

.The energy E
(m)
R (κ) of the re-normalized Hamiltonian H

(m)
R (κ) possesses

an additional perturbation series in powers of (1− κ) and can be written as

E
(m)
R (κ) =

∞∑
0

(1− κ)n Γ(m)
n (121)

where Γ
(m)
n is related to c(m)

n through the equation

Γ(m)
n =

(−1)n

n!

∞∑
ν=0

(ν + 1)nc
(m)
n+ν (122)
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Table 16: Two-point τ -approximants for E(m)
R (κ) for an-harmonic oscillators.

m=2, 3 and 4 correspond respectively to the quartic, sextic and octic anhar-
monic oscillators.
m Two-point approximants

τ2 =
1 + 0.098951398448695κ− 0.111867731520187κ2

1 + 0.348951398448695κ− 0.006371342766916κ2
2

τ3 =
1 + 1.837798720289505κ− 0.365284914180951κ2 − 0.073030161413163κ3

1 + 2.087798720289505κ− 0.177498099224758κ2 − 0.001643500918748κ3

τ2 =
1 + 0.233708765896205κ− 0.269105045615645κ2

1 + 0.567042099229538κ− 0.023897896753149κ2
3

τ3 =
1 + 5.444109045278168κ− 1.494165870971539κ2 − 0.396769776998241κ3

1 + 5.7774423786115κ+ 0.522388995973074κ2 − 0.015800654816468κ3

4 τ2 =
1 + 0.181221984340383κ− 0.336533753511279κ2

1 + 0.556221984340383κ− 0.0346131480068169κ2

Because of the presence of the Pochhammer symbol (ν + 1)n and the fact that
c
(m)
n+ν grows rapidly with increasing index, the above infinite series grows much

more rapidly. However the Levin-like transforms can be used to obtain Γ
(m)
n .

Since there exist two expansions of E(m)
R (κ) in terms of κ and (1−κ), as given

above, they can be used to construct two-point Padé or Levin-like transforms.
We give the two-point τ2 and τ3 approximants in table-16 for m = 2, 3 and τ2
approximant for m = 4 as the coefficients of the expansion of E(4)

R about κ = 1

(i.e., Γ(4)
n ) for the octic oscillator are not known with sufficient accuracy,.

Ground state energy eigenvalues of the quartic oscillator for some specific
values of γ, along with the exact values are given in table-17 . It is seen from the
table that, for a given input, the two-point τ -approximants [92] reproduce better
the energy eigenvalues than the two-point Padé approximants. The simple ex-
pression using the τ2-transform reproduces the energy eigenvalues of the quartic
oscillator over the entire range of the coupling parameter shown. The number
of significant digits obtained with the two-point τ -approximant for γ= 0.2 and
2000 are respectively 5 and 9. The agreement is better for higher values of the
coupling parameter. Table-18 gives the values of the error for quartic, sextic
and octic oscillators with two-point Padé and τ approximants. In all cases it
is found that the τ approximants reproduce the energy eigenvalues better than
Padé approximants.

It is evident from the above discussion that it is really difficult to calculate
even the ground state energy of the an-harmonic oscillators, not to speak of the
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Table 17: Calculated values of the ground state energy eigenvalues of the quartic
oscillator using two-point approximants. In each case two coefficients are used
from the expansion about κ = 1 and the other coefficients are determined from
the expansion about κ = 0 (excluding the c0 = 1 term). The last column gives
the exact energy eigenvalues.

γ Approximants used Exact
τ2 [1/1] τ3 [1/2]

0.2 1.11838 1.11818 1.1183026 1.1182811 1.118292654
1.0 1.39244 1.39194 1.3923695 1.3923346 1.392351642
4.0 1.90317 1.90264 1.9031467 1.9031283 1.903136945

100.0 4.9994198 4.99916 4.9994182 4.9994170 4.999417545
2000.0 13.38844178 13.38834 13.388441696 13.388441635 13.388441701

Table 18: |log10(absolute error)| for quartic, sextic and octic oscillators (m =
2, 3, 4 respectively) obtained from two-point approximants. Expansion about
κ = 1 furnishes two coefficients and that about κ = 0 (excluding c(m)

0 = 1) gives
the others.

γ m = 2 m = 3 m = 4
τ2 [1/1] τ3 [1/2] τ2 [1/1] τ3 [1/2] τ2 [1/1]

0.2 4.1 4.0 5.0 4.9 3.2 2.5 3.8 2.9 2.9 1.9
1.0 4.1 3.4 4.8 4.8 3.4 2.4 4.0 3.2 3.2 1.9
4.0 4.4 3.3 5.0 5.1 3.8 2.4 4.3 3.5 3.5 2.0

100.0 5.6 3.6 6.2 6.3 4.7 2.7 5.1 4.4 4.4 2.2
2000.0 7.1 4.0 8.3 7.2 5.6 3.0 6.0 4.9 4.9 2.4
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Table 19: Values of K(m,n)
0 for different values of m and n

n K
(2,n)
0 K

(3,n)
0 K

(4,n)
0

0 1.0604 1.1448 1.2258
1 1.2666 1.4516 1.5853
2 1.4911 1.8187 2.0627
3 1.6634 2.1370 2.4886
4 1.8068 2.4157 2.8771
5 1.9307 2.6663 3.2355

()

excited states. However, it is tempting to mention that there are remarkable
systematic in the energy eigenvalues of the quantum an-harmonic oscillators
[93,94 ]. If E(m,n) be the nth excited state energy of the Hamiltonian given by
equation- 114, then the energy predicted by the equation(

E(m,n)

2n+ 1

)(m+1)

−
(
E(m,n)

2n+ 1

)(m−1)

=
(
K

(m,n)
0

)(m+1)

γ, (123)

where K(m,n)
0 are constants. The values of K(m,n)

0 for for different m and n are
shown in table- For the ground state K(m,0)

0 has been evaluated by different au-
thors [95, 96] for m = 2, 3, 4, 5. For the quartic oscillator, K(2.n)

0 has been eval-
uated by Skǎla et al [95] for n = 12, · · · 10. It can be shown that for very large
coupling constant K(m,n)

0 is re related to E(m,n), i.e.,E(m,n) ∼= γ
1

m+1K
(m,n)
0 .

For the sextic and octic oscillators, the values of K(m,n)
0 for the excited states

were estimated by evaluating the energy for very large γ (=106). We then made
rational interpolation to obtain n-dependence of K(m,n)

0 and these are as follows:

K
(2,n)
0 =

(
1.1924+33.2383n=56.2169n2

1+43.6106n

)1/3
K

(3,n)
0 =

(
1.7176+1.3224n+2.6933n2+0.7092n3

1+0.4510n

)1/4
K

(4,n)
0 =

(
2.7676+12.6576n+9.2212n2+13.3678n3+6.4509n4

1+3.1840n

)1/5
Some values of K(m,n)

0 for m = 2, 3, 4 are shown in table-19
The authors [ 94] calculated the energy eigenvalues of 25 excited sates for

the quartic oscillator, 19 excited states for the sextic oscillator and for different
values of the coupling parameter. It was found that the simple formula repro-
duces the energy eigenvalues with an accuracy of 1% over the wide range of the
coupling parameter.

A global Padé approximant was also made for K(m,0)
0 as follows:

K
(m,0)
0 =

1 + 0.7961 (m− 1)− 0.05129 (m− 1)
2 − 0.04694 (m− 1)

3

1 + 0.7858 (m− 1)− 0.1655 (m− 1)
2
+ 0.01902 (m− 1)

3

63



To test the above, the values calculated for m = 250 and m = 500 are
respectively 2.3954 and 2.4307 which compares well with the values 2.400235
and 2.433557 reported by Farandez and Guardiola [96].

6 Other Applications and Conclusion

In a subsequent article Roy and Bhattacharya [97] used the Levin and Weniger
transforms to predict the unknown terms of a series.. One advantage of the
Levin-like transforms is that these transforms have a free parameter β and one
can exploit it for prediction of the subsequent terms. The Levin and Weniger
transforms k, which requires k+1 terms of the original series, we can adjust the
value of β so that the (k+2)-th term is predicted exactly. One can then include
one more term of the series, obtained by expanding the k-th order transform,
and form a transform of order k + 1 with the same value of β. We iterate
the procedure to predict the subsequent terms of the series and the procedure
may be termed as the method of successive expansion. Using this method it is
possible to predict the subsequent terms of the series even when the coefficients
themselves form a sequence of functions of some other variable. Such situations
arise in some Ising problems and in some problems in QCD .

The authors applied the method to a number of physical problems, namely,
the perturbation series for the hydrogen atom in a magnetic field, the quartic
anharmonic oscillator, the sequences encountered in Ising problems, some series
encountered in quantum electrodynamic (QED) and quantum chromodynamics
(QCD) and the excluded volume problem in polymers. It is observed that in
almost all these diverse physical problems the relevant physical parameters can
then be evaluated with an accuracy higher than that obtainable by summing
the original input series. Thus it is possible to obviate, to some extent, the
necessity as well as the labour of evaluating more terms of the divergent series
encountered in many physical problems.

Das and Roy [98] used these transforms to solve the motion of a projectile
with quadratic damping in a constant gravitational field. It was demonstrated
that it is possible to obtain the path with a few terms of the divergent series for
x (t) and y (t) by using these transforms.

There exists the possibility of extending these transforms to sequences of
vectors and sequences of matrices.

64



References
[1] J. P. Delahaye and B. Germain-Bonne, The set of logarithmically con-

vergent series cannot be accelerated, SIAM J. Numer. Anal., 19, 840-44
(1982).

[2] G. H. Hardy, Divergent Series (Clarendon Press, Oxford) 1949.

[3] A. Peyerimhoff, Lectures on Summability (Springer Verlag, Berlin) 1969.

[4] R. E. Powell and S. M. Shah, Summability theory and its applications
(Prentice Hall, India, New Delhi) 1988 .

[5] D. Shanks, Non-linear transformations of divergent and slowly convergent
sequences, J. Math. and Phys. (Cambridge, Mass),34, 1-42 (1955).

[6] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth
Edition, (Cambridge University Press, 1963).

[7] G. M. Petersen, Regular Matrix Transformations ( McGraw-Hill, London,
1966).

[8] A. C. Aitken, On Bernoulli’s numerical solution of algebraic equations,
Proc. Roy. Soc. Edinburgh 46, 289-305 (1926).

[9] J. Wimp, Sequence transformations and their applications (Academic
Press, New York) page-6 (1981).

[10] C. Brezinski and M. R. Zaglia, Extrapolation methods: Theory and practice
(North Holland) 1991.

[11] E. J. Weniger, Nonlinear sequence transformations for the acceleration of
convergence and the summation of divergent series , Comput. Phys. Re-
ports, 20, 189-371 (1989)

[12] J. E. Drummond, A formula for accelerating the convergence of a general
series, Bull. Austral. Math. Soc., 6, 69-74 (1972).

[13] J. E. Drummond, Summing a common type of slowly convergent series of
positive terms, J. Austral. Math. Soc., Series B, 19, 416-421 (1976).

[14] D. Levin, Development on nonlinear transformations for improving conver-
gence of sequences, Int. J. Comput. Math., B3, 371-388 (1973).

[15] D. A. Smith and W. A. Ford, Numerical comparisons of nonlinear sequence
accelerators, Math. Comput., 38, 481-499 (1982).

[16] A. Sidi, J. Comput. Appl. Math., 7, 37- (1980).

[17] A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cam-
bridge University Press (20030

65



[18] K. Knopp, Theory and Application of Infinite Series, ( Blackie and Son,
London and Glasgow, 1951).

[19] D. A. Smith and W. A. Ford, Acceleration of linear and logarithmic con-
vergence, SIAM J. Numer. Anal., 16, 223-240 (1979).

[20] S. Bhowmick, R. Bhattacharya and D. Roy, Iterations of convergence ac-
celerating transforms, Comput. Phys. Commun., 54, 31-46 (1989).

[21] R. Bhattacharya, D. Roy and S. Bhowmick, On the regularity of Levin
u-transform, Comput. Phys. Commun., 55, 297-301 (1989).

[22] E. J. Weniger, Mathematical properties of a new Levin-type sequence trans-
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Modeling of blood flow through a deformable artery 
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ABSTRACT 

The application of drug targeting delivery using magnetic nanoparticles to treat various medical 

conditions is of significant interest, particularly in the context of controlling tumor growth and 

addressing cardiovascular diseases like atherosclerosis and aneurysms. This paper aims to 

develop a mathematical model describing blood flow and magnetic nanoparticles injected into 

the bloodstream. These nanoparticles are directed to specific locations within the body by 

utilizing an external magnetic field applied to the flowing blood. The analytical solutions 

obtained from this model to examine how wall deformation influences the motion of 

nanoparticles within the bloodstream and the overall dynamics of blood flow. The validity of 

our findings has been substantiated by comparing them with previous research concerning the 

velocity profile. 

Keywords: Deformable artery,  Magnetic nanoparticles,  Drug delivery, Pressure wave 

propagation 

NOMENCREATURE 

Quantity Symbol Value   

Radius of the vessel (m) 𝑅0 0.01 Induced electric field (V/m) 𝑬 

Circular frequency (rd/s) ω 7.854 Magnetic flux intensity (T) B 

 

Young modulus of aortic (Pa) 𝐸 106 Induced current density (A/m2) 𝑱 

Thickness ofthe wall (m) ℎ 0.002 Electric permittivity (F/m) 𝜖 

Wall density (kg/m3) 𝜌𝑠  1100 Charge density (C/m3) 𝜌𝑒 

Blood density (kg/m3) 𝜌 1050 Magnetic permeability (H/m) 𝜇 

Blood viscosity (Pa s) ƞ 4×10-3 Electricalconductivity of blood (S/m) 𝜎 

Stokes constant 𝐾𝑠  3.17 ×10-17 Uniform magnetic field strength (T) 𝐵0 

Mass of nanoparticle (kg) 𝑚 26.2×10-20 Magnetic flux intensity (T) B 

Poisson’s ratio 𝜎𝑝 0.5   

 

 



 

72 
 

INTRODUCTION 

 

Delivering the precise dosage of a drug to a specific location in the human body is a 

challenging task aimed at avoiding excessive drug exposure to healthy tissues, which can lead 

to side effects and affect other organs [1,2]. Ciofani et al. [3] introduced a nanotechnology 

platform that utilizes magnetic nanoparticles for drug delivery applications, particularly in the 

realms of chemotherapy and thermotherapy. Magnetic drug targeting has emerged as a valuable 

technique for directing drugs to precise locations within the body by imposing an externally 

applied magnetic field. Several numerical and analytical studies [4, 5, 6,7] have investigated 

the flow of blood containing magnetic nanoparticles within arteries. The impact of a magnetic 

field on blood flow has been examined both analytically and numerically by Abi-Abdallah 

[8,9] in a straight tube, while Drochon [10] examined the blood flowin a vessel with wall 

deformation. However, these studies did not specifically account for the motion of magnetic 

nanoparticles in the context of targeted drug delivery applications. Moreover, it is crucial to 

emphasize the drug delivery with magnetic nanoparticles for the deformable characteristics of 

the vessel wall. 

2 PROBLEM FORMULATION 

 

The following Maxwell's equations of electromagnetism are employed to represent the 

magnetohydrodynamic flow of blood in an arterial segment:   

𝛁. 𝑬 =
𝜌𝑒
𝜖
, 

𝛁 × 𝑬 = −
𝜕𝐵⃗ 

𝜕𝑡
,     (1) 

𝛁. 𝐁 = 0, 

𝛁 × 𝐁 = 𝜇. 

 

 

Fig. 1: Geometry of the model 
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In this model (cf. Fig. 1), it is important to consider the direction of the externally applied 

magnetic field and the direction of blood flow at an angle 𝜃. As a consequence of this 

configuration, the magnetic flux intensity is represented as 𝑩 =

(𝐵0𝑐𝑜𝑠𝜃, −𝐵0𝑠𝑖𝑛𝜃, 𝑏𝑧(𝑟, 𝜃, 𝑡)). The angle between the direction of flow and the applied 

magnetic field is assumed to be 𝜃 =
𝜋

2
. The induced current density 𝑱 can be obtained from 

Ohm's law ,𝑱 = 𝜎(𝑬+ 𝒖 × 𝑩).                                                      (2) 

 

2.1 Equations of Motion 

  The continuity equation with fluid velocity components (𝑢𝑟 ,0, 𝑢𝑧) and the nanoparticle 

velocity components (𝑣𝑟𝑝 , 0, 𝑣𝑧𝑝) can be written as: 

𝜕𝑢𝑟

𝜕𝑟
+
𝑢𝑟

𝑟
+
𝜕𝑢𝑧

𝜕𝑧
= 0.               (3) 

The Navier-Stokes equation can be projected onto the radial and axial directions as follows: 

𝜕𝑢𝑟

𝜕𝑡
= −

1

𝜌
(
𝜕𝑃

𝜕𝑟
) + 𝜈 (

𝜕2𝑢𝑟

𝜕𝑟2
+
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+
𝜕2𝑢𝑟

𝜕𝑧2
−
𝑢𝑟

𝑟2
) −

𝜎𝑢𝑟𝐵0

𝜌
+
𝐾𝑠𝑁

𝜌
(𝑣𝑟𝑝 − 𝑢𝑟),      (4) 

𝜕𝑢𝑧

𝜕𝑡
= −

1

𝜌
(
𝜕𝑃

𝜕𝑧
) + 𝜈 (

𝜕2𝑢𝑧

𝜕𝑟2
+
1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+
𝜕2𝑢𝑧

𝜕𝑧2
) −

𝜎𝑢𝑧𝐵0

𝜌
+
𝐾𝑠𝑁

𝜌
(𝑣𝑧𝑝 −𝑢𝑧).              (5) 

The amplitude of the pressure disturbance is sufficiently small to the extent that the nonlinear 

terms related to the inertial term of fluid flow can be regarded as negligible when compared to 

the linear terms. 

2.2 Boundary conditions 

       It is assumed that the velocity of blood at the vessel wall is the same as the wall motion. 

The mathematical form is provided as follows: 

𝑢𝑟 =
𝜕𝜁𝑟
𝜕𝑡
,      𝑢𝑧 =

𝜕𝜁𝑧
𝜕𝑡
, at  𝑟 = 𝑅0, 

and    𝑢𝑟 = 0,
𝜕𝑢𝑧

𝜕𝑟
= 0,          at  𝑟 = 0.           (6) 

 

2.3 Deformation of the vessel wall 

 

We assume that 𝜁 = (𝜁𝑟(𝑧, 𝑡), 0,𝜁𝑧(𝑧, 𝑡)) be the radial and longitudinal displacements of an 

arbitrary point at the wall after deformation. The equations of motion of the interaction of 

deformed vessel wall and blood flow are taken in components as  
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𝜌𝑠ℎ
𝜕2𝜁𝑟

𝜕𝑡2
= [𝑃 − 2𝜂

𝜕𝑢𝑟

𝜕𝑟
]
𝑟=𝑅0

−
𝐸ℎ

𝑅0(1−𝜎𝑝
2)
(
𝜁𝑟

𝑅0
+  𝜎𝑝

𝜕𝜁𝑧

𝜕𝑧
),          (7) 

𝜌𝑠ℎ
𝜕2𝜁𝑧

𝜕𝑡2
= −𝜂 [

𝜕𝑢𝑧

𝜕𝑟
+
𝜕𝑢𝑟

𝜕𝑧
]
𝑟=𝑅0

+
𝐸ℎ

(1−𝜎𝑝
2)
(
𝜕2𝜁𝑟

𝜕𝑧2
+ 

𝜎𝑝

𝑅0

𝜕𝜁𝑟

𝜕𝑧
).          (8) 

3 ANALYTICAL SOLUTION 

By utilizing the Navier-Stokes Eqs. (3), (4) and the continuity equation (2), we obtain,  

 ∇2𝑃− 𝑑𝑖𝑣(𝑱 × 𝑩) = 0.                                                       (9) 

We assume that the solution of the unknown variables takes in the form  

[𝒖, 𝒗𝑝 ,𝑃] = [𝒖
∗ ,𝒗𝑝

∗ , 𝑃∗] exp [𝑖𝜔(𝑡 −
𝑧

𝑐
)].              (10) 

We obtain the solution 𝑃∗ by using equations (9) and (10) as 

𝑃∗(𝑟) =
𝜂𝑐

𝜔

𝛼𝑚
2

𝑅0
2 𝐴1𝐽0 (

𝑖𝜔

𝑐
𝑟),                                          (11) 

where the dimensionless parameter 𝛼𝑚is defined as  𝛼𝑚 = 𝑅0√
𝜔

𝜈
−
𝑖𝐾𝑠𝑁

𝜂
+

𝑖𝐾𝑠
2𝑁

𝜂(𝑚𝑖𝜔+𝐾𝑠)
− 𝑖

𝐻𝑎2

𝑅0
2   

and Hartmann number 𝐻𝑎 defined as 𝐻𝑎 = 𝑅0𝐵0√
𝜎

𝜂
. 

Using the boundary condition (5), axial velocity can be obtained as 

𝑢𝑧
∗(𝑟) = 𝐴1𝐽0 (𝑖

𝜔

𝑐
𝑟) + 𝐴2 

𝐽0(
𝛿𝑟

𝑅0
𝑖
3
2)

𝐽0(𝛿𝑖
3
2)

 ,                  (12) 

where 𝛿 = √𝛼𝑚
2 − 𝑖

𝜔2

𝑐2
𝑅0
2.  

The radial velocity of the blood can be obtain as 

𝑢𝑟
∗(𝑟) = 𝐴1𝐽0 (𝑖

𝜔

𝑐
𝑟) +

𝑅0 𝑖𝜔

𝑐𝛿𝑖
3
2

𝐴2 

𝐽1(
𝛿𝑟

𝑅0
𝑖
3
2)

𝐽0(𝛿𝑖
3
2)

.           (13) 

The displacement of the vessel wall can be taken in the form 

𝜁𝑟(𝑡, 𝑧) = 𝐴3 exp [𝑖𝜔(𝑡 −
𝑧

𝑐
)],                              

 𝜁𝑧(𝑡,𝑧) = 𝐴𝑧 exp [𝑖𝜔(𝑡 −
𝑧

𝑐
)].                      (14) 

In order to determine the integration constants 𝐴1, 𝐴2, 𝐴3  and 𝐴4 , the following assumptions 

are made:  

(i) The radius of the vessel is smaller than the wavelength of oscillation, ensuring 

that     
𝜔𝑅0

𝑐
≪ 1.   
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(ii) 𝐽0 (𝑖
𝜔

𝑐
𝑅0) ≈ 1,   𝐽1 (𝑖

𝜔

𝑐
𝑅0) =

𝑖𝜔𝑅0

2𝑐
. 

Let us define   𝐹 =
2𝐽1(𝛿𝑖

3
2)

𝛿𝑖
3
2𝐽1(𝛿𝑖

3
2)

. 

A homogeneous linear system of equations represented by 𝐵𝐴= 0 is obtained using the 

boundary conditions (6) into the Eqs. (7), (8), (12) and (13), yields 

B=[bij]4×4=

(

 
 
 

𝑖𝜔𝑅0

2𝑐

𝑖𝜔𝑅0

2𝑐
 𝐹 −𝑖𝜔 0

1 1 0 −𝑖𝜔

𝑏31

−
𝜂𝜔2

𝑐2
𝑅0

−𝜂𝑖𝜔(2 − 𝐹)
𝜂

2
[
𝛿2𝑖3

𝑅0
2 −

𝜔2

𝑐2
] 𝑅0𝐹

−
4𝐸ℎ

𝑅0
2

−
2𝐸ℎ𝑖𝜔

3𝑅0𝑐

2𝐸ℎ𝑖𝜔

3𝑅0𝑐

𝜌𝑠ℎ𝜔
2

3𝑐2 )

 
 
 

, 

Where the unknowns  𝐴 = [𝐴1𝐴2 𝐴3 𝐴4]
𝑇, and 

𝑏31 = 𝜌𝑐 −
𝜂𝑐

𝜔

𝑖𝑀2

𝑅0
2 −

𝜂𝑖𝜔

𝑐
−
𝑖𝐾𝑠𝑁𝑐

𝜔
+

𝑖𝐾𝑠
2𝑁𝑐

𝜔(𝑚𝑖𝜔+𝐾𝑠 )
. 

Using the row and column operations, and the method adopted by  Atabek and Lew [11], we 

obtain the frequency equation in 
𝑐

𝑐0
 as 

16

3
(1 − 𝐹)(

𝑐0

𝑐
)
2

+ [−
8

3
(1 − 𝐹)𝑘+

4

3
(𝐾 +

𝑖𝑁𝐾𝑠

𝜌𝜔
(

𝐾𝑠

𝑖𝑚𝜔+𝐾𝑠
−1) (𝐹 − 4)](

𝑐

𝑐0
)
2

+

(
𝛿2𝜈

𝑅0
2𝜔
𝐹 + 2𝑘) (𝐾 +

𝑖𝑁𝐾𝑠

𝜌𝜔
(

𝑖𝑁𝐾𝑠

𝑖𝑚𝜔+𝐾𝑠
−1)) = 0.                   (15) 

In the above equations, two non-dimensional numbers, denoted as k and K are defined as 

𝑘 =
𝜌𝑠ℎ

𝜌𝑅0
,         𝐾 = 1− 𝑖

𝐻𝑎2𝜈

𝑅0
2𝜔

. 

Table 2: The roots of the  frequency equation, represented by Young mode solution (
𝑐1

𝑐0
) and 

the Lamb mode solution (
𝑐2

𝑐0
), when 𝑁 = 3.78 × 1020 . 

Ha 0 1 2 

𝑐1
𝑐0

 0.920+ 0.02818 i 0.9207+ 0.0302 i 0.920+ 0.0359i 

𝑐2
𝑐0

 3.11687+0.3587i 3.1171+ 0.35955i 3.1179+ 0.3620 i 
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Mod(c1)  (m/s) 8.99122 8.99073 8.9882 

Mod(c2)  (m/s) 30.6214 30.6251 30.6351 

 

Ha 4 10 20 

𝑐1
𝑐0

 0.9172+0.05904 i 0.85536 + 0.19855 i 0.5602 + 0.3299 i 

𝑐2
𝑐0

 3.12097+0.3719 i 3.1337 + 0.4405 i 3.1082 + 0.6519 i 

Mod(c1)  (m/s) 8.9704 8.57027 6.3452 

Mod(c2)  (m/s) 30.6762 30.8856 30.9961 

 

Calculating the celerities𝑐, we solve the constants 𝐴1, 𝐴2 , 𝐴3and 𝐴4, such that the system 

expresses in terms of the free variable 𝐴1as follows 

𝐴2

𝐴1
= −

(𝐾−
𝜔𝜈𝑖

𝑐2
+
𝑖𝐾𝑠𝑁

𝜌𝜔
(

𝐾𝑠
𝑚𝑖𝜔+𝐾𝑠

−1))

−
𝜈𝑖𝜔

𝑐2
(2−𝐹)+

2𝐸ℎ

3𝑅0𝜌𝑐
2(1−𝐹)

,                                (16) 

𝐴3

𝐴1
=
𝑅0

2𝑐
+
𝑅0

2𝑐
𝐹
𝐴2

𝐴1
,                                                       (17) 

𝐴4

𝐴1
=

1

𝑖𝜔
(1 +

𝐴2

𝐴1
).                                                        (18) 

The non-dimensional equations for fluid velocities and the behavior of nanoparticles are 

obtained as 

𝑢𝑧
∗(𝑟)

𝐴1
= 1+

𝐴2

𝐴1

𝐽0(
𝛿𝑟

𝑅0
𝑖
3
2)

𝐽0(𝛿𝑖
3
2)

,     since 𝐽0 (
𝑖𝜔𝑟

𝑐
) = 1.                 (19) 

𝑢𝑟
∗(𝑟)

𝐴1
=

𝑖𝜔𝑅0

𝑐
[
𝑟

2𝑅0
+
𝐴2  

𝐴1

1

𝛿𝑖
3
2

𝐽1(
𝛿𝑟

𝑅0
𝑖
3
2)

𝐽0(𝛿𝑖
3
2)

],as 𝐽0 (
𝑖𝜔𝑟

𝑐
) =

𝑖𝜔𝑟

2𝑐
,      (20) 

𝑣𝑟𝑝
∗

𝐴1
=

𝐾𝑠

𝑚𝑖𝜔+𝐾𝑠

𝑖𝜔𝑅0

𝑐
[
𝑟

2𝑅0
+
 𝐴2 

𝐴1

1

𝛿𝑖
3
2

𝐽1(
𝛿𝑟

𝑅0
𝑖
3
2)

𝐽0(𝛿𝑖
3
2)

],                        (21) 
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𝑣𝑧𝑝
∗

𝐴1
=

𝐾𝑠

𝑚𝑖𝜔+𝐾𝑠
[1 +

𝐴2

𝐴1

𝐽0(
𝛿𝑟

𝑅0
𝑖
3
2)

𝐽0(𝛿𝑖
3
2)

].                                            (22) 

4 RESULTS AND DISCUSSION 

The wave celerities, are the roots of Eq. (15), provided in Table 2. It is worth noting that the 

values obtained in the case of 𝐻𝑎 = 0 and 𝑁 = 0 are consistent with the results of Atabek and 

Lew [11] while considering the propagation of pressure pulses in elastic vessels without a 

magnetic field. 

 

Fig. 2: Comparison of the axial component of velocity 𝑢𝑧  /𝐴1 for the Young wave with the 

solution of Atabek and Lew, when Ha = 0, Ks = 0. 

 

 

Fig. 3: The moduli (absolute values) of the amplitudes of the non-dimensional axial velocity,  

|
𝑢𝑧
∗

𝐴1
|  and  |

𝑣𝑧𝑝
∗

𝐴1
| for Hartmann number, 𝐻𝑎 = 2. 
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The absolute values (moduli) of the amplitudes of the non-dimensional axial and radial  

velocities |
𝑢𝑧
∗

𝐴1
| , |

𝑣𝑧𝑝
∗

𝐴1
| , |

𝑢𝑟
∗

𝐴1

𝑐

𝜔𝑅0
| and |

𝑣𝑝𝑟
∗

𝐴1

𝑐

𝜔𝑅0
|  have been computed using the Eqs. (19), (20), 

(21) and (22) for both types of waves, namely Young waves (𝑐 =  𝑐1 ) and Lamb waves (𝑐 =

 𝑐2). 

 

 

Fig. 4: The moduli (absolute values) of the amplitudes of the non-dimensional radial 

velocity,  

|
𝑢𝑟
∗

𝐴1

𝑐

𝜔𝑅0
| and |

𝑣𝑝𝑟
∗

𝐴1

𝑐

𝜔𝑅0
| for Hartmann number, 𝐻𝑎 = 2. 

 

Fig. 5: The radial displacement, 
𝜁𝑟

𝐴1
, of the wall is plotted for various values of the Hartmann 

number, Ha, in the case of Young waves at 𝑡 = 0. 

 

In this context, the velocity profiles of both the fluid and nanoparticles are plotted in Fig. 2 and 

Fig. 3 for the case with a Hartmann number, 𝐻𝑎 =  2, and under the influence of Young waves. 

It is evident that the external magnetic field exerts an influence on the wave celerities within 

the fluid and the vessel wall, as well as on the fluid velocity profiles. Specifically, it tends to 
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decrease blood flow and flatten the velocity profile.The graph illustrates that the absolute value 

of fluid velocity is higher than that of nanoparticle velocity.Fig. 4 depicts that the radial 

displacement of the wall (Eq. 14) decreases as the Hartmann number increases. 

 

 

CONCLUSION 

The influence of the external magnetic field is evident in various aspects, including its 

impact on the wave celerities within the fluid and the vessel wall, fluid velocity profiles, and 

wall displacements. Regarding wall displacement, it is important to note that the axial velocity 

is not zero at the vessel wall. The flow of nanoparticles is equal to 
𝐾𝑠

𝑚𝑖𝜔+𝐾𝑠
 times the flow of 

blood with |
𝐾𝑠

𝑚𝑖𝜔+𝐾𝑠
| < 1. 
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