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PREFACE 

Professor K C Kar was an outstanding theoretical physicist and an eminent and dedicated educationist, 

who had spent most of his formal working period as a teacher in Presidency College(now known as 

Presidency University), Kolkata, with some short stints  at Scottish Church College, Kolkata and 

Serampore College and Rajshahi College. This part of his life spanned three decades of twentieth 

century extending from the early twenties to the mid-fifties. His active life, however extended well 

beyond that.He converted his residence at 4/1 Mohan Bagan Lane, Kolkata 700 004 to a small working 

institution which is named “Institute of Theoretical Physics” and initiated the publication of a journal 

titled “Indian Journal of Theoretical Physics in 1953.The institute that he founded is still functional and 

is known as “Calcutta Institute of Theoretical Physics”. Prof. Kar has been an inspiring figure for 

generations of aspiring physicists and certainly one of that elite group of Bengali scientists who made 

science in Bengal competitive with the rest of the world at times which can be described as “difficult”. 

Kulesh Chandra Kar was very much interested in research and came in contact with Professor C V 

Raman from whom he received encouragement to carry out research in Indian Musical instruments in 

1922.Next he turned his attention towards statistical mechanics and soon mastered over the subject. 

His rsearches in theoretical physics covered a wide spectrum of subjects like Acoustic Physics, Wave 

statistics, Nuclear and Particle Physics ,and Theory of Relativity. During his career he published 123 

scientific papers in different journals of National and International repute. He also published five books 

on some special topics of Physics for advanced learners. 

The year 2024 marks the 125th Birth Anniversary of Prof.K C Kar. To celebrate this special occasion 

we have planned to publish this special issue of IJTP as a tribute to Prof. Kar.  

In the advent of 21st century Kofi Annan, The Secretary-General of the United Nations, has addressed 

the usefulness of science in humankind. “Science has contributed immensely to human progress and to 

the development of modern society. The application of scientific knowledge continues to furnish 

powerful means for solving many of the challenges facing humanity, from food security to diseases 

such as AIDS, from pollution to the proliferation of weapons. Recent advances in information 

technology, genetics, and biotechnology hold extraordinary prospects for individual wellbeing and that 

of humankind as a whole.” 

Considering the scientific community’s basic concern for human welfare to solve the complex 

problems related to society & environment the interdisciplinary approach has been the ONLY way out. 

As such, Science always has been interdisciplinary in nature. Developing novel mathematical theory 

inspired scientist for its application in every field of science. Application of physical principle in 

chemistry, biology, and computer science is very well known. While last decades saw the surge of 

application of principles in physics and mathematics to the highly diverse fields like economics, 

climate & environmental science, ecology, social science etc. and becoming increasingly attractive for 

new generation of scientists. To inspire them for exploration in the unmet research fields like Nano 

systems in Chemistry, Systems Biology approach to medical science, large scale simulation to 

understand the climate, Ecological balance to recover earth system etc. require large data to generate 



and analyse using mathematical & physics rules, so that predictive systems can be robust and our 

knowledge in such systems become useful and readily applicable. 

Importance of Interdisciplinary research has been cited in many recent articles, one of the important 

facts is how the different subject has influenced each other, as depicted by the figure 1, here (reference: 

1). This elaborates that the research impacts reflected by highly cited paper clusters (used in this 

reference to quantify) statistically significantly and positively associated with interdisciplinarity 

influence in the subject.  

                                                          

Fig.1. A chord diagram representation of the affinities between research areas. The affinity indices 

were defined as the time-averaged Jaccard similarity indices and were evaluated between each pair of 

research areas. They were assigned to each connection between the research areas, represented 

proportionally by the size of each arc, from which it is evident that the degree of affinity varied 

considerably for different pairs of the disciplines (see ref1 for details). 

As shown in the figure1, Medicine & life sciences are least influenced by physics & mathematics, 

which provides ample opportunities for the next generations for research contributions, as large data 

repository and organized data are available freely in these fields (ref2), waiting for mining. 

In the present issue, editors have attempted to provide four different articles influencing the field of 

research in Climate change, Development of new algorithm, Ecological system and in medical science, 

the application of mathematics & physics as cross disciplinary research articles. Hopefully, this issue 

will encourage teachers & students to stimulate novel ideas in implementation and development of 

Interdisciplinary approaches in Science & humanities, which will spread the dream of Prof. Kulesh C 

Kar widely to scientific communities. 
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Untangling Climate’s Complexity: Methodological Insights 
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[Abstract: In this article, we review the interdisciplinary techniques (borrowed from 

physics, mathematics, statistics, machine-learning, etc.) and methodological framework that 

we have used to understand climate systems, which serve as examples of “complex systems”. 

We believe that this would offer valuable insights to comprehend the complexity of climate 

variability and pave the way for drafting policies for action against climate change, etc. Our 

basic aim is to analyse time-series data structures across diverse climate parameters, extract 

Fourier-transformed features to recognize and model the trends/seasonalities in the climate 

variables using standard methods like detrended residual series analyses, correlation structures 

among climate parameters, Granger causal models, and other statistical machine-learning 

techniques. We cite and briefly explain two case studies: (i) the relationship between the 

Standardised Precipitation Index (SPI) and specific climate variables including Sea Surface 

Temperature  (SST),  El  Niño  Southern  Oscillation  (ENSO),  and  Indian  Ocean  Dipole 

(IOD), uncovering temporal shifts in correlations between SPI and these variables, and reveal 

complex patterns that drive drought and wet climate conditions in South-West Australia; (ii) 

the complex interactions of North Atlantic Oscillation (NAO) index, with SST and sea ice 

extent (SIE), potentially arising from positive feedback loops.] 
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Introduction

“If you think the economy is more important than the environment,
try holding your breath while counting your money.” – Professor
Guy McPherson

The climate system is an excellent example of a “complex system”, which is
composed of many interconnected and interdependent parts that exhibit “emer-
gent” behaviors and properties not easily predictable from the behavior of in-
dividual parts or “sum of its parts”1–3. Complex systems are ubiquitous and
hence are studied in various domains such as physics, biology, ecology, sociology,
economics, environmental science, etc. They exhibit characteristics like: (i) non-
linearity: Small changes in one part of the system can lead to significant and often
unpredictable effects throughout the system; (ii) emergence: Novel properties or
behaviors emerge at higher levels of organization that are not directly attribut-
able to the individual components of the system; (iii) dynamical behavior and
adaptation: systems often exhibit dynamic behaviors such as self-organization,
chaos, phase transitions, and they have the ability to adapt and evolve in response
to changes in their environment or internal dynamics; (iv) feedback loops: In-
teractions among system components create feedback loops, where the output of
a process feeds back into the system, influencing further interactions, and often
leading to catastrophic instabilities4. Understanding the dynamics of complex
systems, therefore, necessitates a multidisciplinary approach integrating mathe-
matics, physics, statistics, machine learning, and other tools of data science5. We
must mention here the work of Klaus Hasselmann, a German climate scientist
and Nobel Laureate, who made substantial contributions to our understanding
of climate dynamics and the development of climate models. In his ground-
breaking 1976 work6, Hasselmann introduced the concept of stochastic climate
modeling, incorporating random processes into climate models to elucidate how
natural variability and random factors can influence long-term climate trends. He
also devised statistical methods to distinguish between natural climate variability
and human-induced effects, providing strong evidence of human impact on global
warming. Additionally, he played a key role in developing coupled atmosphere-
ocean models, crucial for accurately simulating and predicting climate dynamics.
In 2021, Hasselmann, alongside Syukuro Manabe and Giorgio Parisi, received the
Nobel Prize in Physics7 for his pioneering contributions to climate modeling and
the understanding of complex physical systems. In many social and environmen-
tal systems (including climate), we often do not have a clear understanding of the
causal relationships between different variables. This makes the understanding
of complex climate dynamics significantly more challenging. Therefore, we take
the help of Granger causal models8 and other tools of statistical inference9,10 to
deepen our comprehension of the dynamic interactions among key climate vari-
ables, and expand our insights into the intricate mechanisms shaping climate
patterns.

Climate change poses a significant challenge globally, affecting ecosystems,
economies, well-being of humans as well as livestock11–14.
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“Climate change is the greatest threat we face. It’s the defining
issue of our time, and we have to address it if we want to leave
a thriving planet for future generations.” – Katharine Hayhoe, a
climate scientist and professor

We hope that understanding of the complex processes behind phenomena of cli-
mate change, etc. using insights from multiple disciplines will help us develop
effective strategies for mitigation and adaptation. In this respect, we must men-
tion the pioneering works of the economist and Nobel Laureate, William Nord-
haus, who developed dynamic and quantitative models (now called integrated
assessment models) that described the global interplay between society, the econ-
omy, and climate change15. The present interdisciplinary research approaches
may supplement existing models and their applications in public policy (see e.g.,
Epilogue in Chakraborti et al.16).

Traditionally, people have been building climate models with computer-based
simulations of mathematical equations to represent the interactions and processes
within the earth’s climate system17–19. These models have been then used to
understand the past climate variations, predict future climate trends, and also
assess the potential impacts of climate change. Generally, climate models inte-
grate data on atmospheric dynamics (simulations of the movement of air masses,
circulation patterns, and atmospheric processes such as convection, precipitation,
and radiation), ocean dynamics (currents, temperature variations, and interac-
tions between the ocean and atmosphere, including El Niño and La Niña), land
surface properties (vegetation cover, soil moisture, and land use changes, which
influence energy and water exchanges with the atmosphere), and other relevant
factors like carbon, nitrogen, and other biogeochemical cycles that play a role in
regulating the Earth’s climate. Hence, the computer-based climate models pro-
vide a physical foundation for the climate change projections and are therefore
built to include some of the most comprehensive range of physical, chemical, and
biological processes with immense computational complexity; thereby calling for
simpler approaches20. In the recent past, we too have proposed alternate and
simple approaches, based on machine learning and data science, to identify sig-
nificant statistical relationships among these climate variables and enhance our
understanding of climate dynamics21,22.

In this review article, the basic aim is to introduce the simple methods we have
used to analyse time-series data structures across diverse climate parameters, ex-
tract Fourier-transformed features to recognize and model the trends/seasonalities
in the climate variables. We have used standard methods like detrended residual
series analyses, correlation structures among climate parameters, Granger causal
models, and other statistical machine-learning techniques. Below, we explain the
background and rationale for our two case studies21,22:

(1) The relationship between the Standardised Precipitation Index (SPI) and
specific climate variables, including Sea Surface Temperature (SST), El
Niño Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD)23–27,
uncovering temporal shifts in correlations between SPI and these vari-
ables, and reveals complex patterns that drive drought and wet climate
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conditions in South-West Australia. Droughts manifest in various forms,
with meteorological drought being a critical indicator of extreme climate
conditions28. Previous studies have explored the dynamics of meteorolog-
ical droughts and their relationship with climatic factors such as ENSO
and IOD cycles25–27,29–37. However, there was a necessity for multivariate
approaches to understanding drought dynamics, and hence we developed
Granger causal models to examine the causal relationships among the
variables (SST, NINO 3.4, and IOD) and their collective impact on SPI
in South-West Australia, leveraging machine-learning techniques21.

(2) The complex interactions of the North Atlantic Oscillation (NAO) index,
with SST and sea ice extent (SIE), potentially arising from positive feed-
back loops. We delved into another study22 focusing on the complex dy-
namics of climate variables such as the North Atlantic Oscillation (NAO),
a key atmospheric pressure index affecting weather patterns across North
America and Northern Europe. Past research has highlighted the NAO’s
substantial impact on cold air outbreaks, storm occurrences, and climate
variability in these regions. Previous studies had also underscored the
positive feedback loop between melting Arctic SIE and increasing SST,
driven by atmospheric new particle formation and growth, accelerating
Arctic warming38. Recent studies had shown: (i) a significant decrease
in SIE in the coming years, intensifying global atmospheric circulation
and directly impacting SIE melting39,40. (ii) The winter NAO plays an
important role in weather variability in northwest Europe, with recent
studies highlighting the predictive power of autumnal Arctic sea ice for
winter NAO forecasting41. (iii) NAO variability accounts for a substan-
tial portion of atmospheric pressure variability and correlates with SST
anomalies42–44. Besides, climate models have illustrated how multidecadal
variations in the NAO induce corresponding fluctuations in Atlantic cir-
culation and Arctic sea ice loss, contributing to hemispheric warming45.
Hence, we developed a hybrid model to analyse the relationships: (a) the
SPI to SST, NINO 3.4, and IOD, (b) the interplay among North Atlantic
Oscillation (NAO), SST, and Sea Ice Extent (SIE). Utilizing machine
learning algorithms like LASSO, we identified significant Fourier harmon-
ics essential for modeling long-term memory. Additionally, to capture
short-term memory, we incorporated lagged estimators such as IOD, SST,
and NINO 3.4 within the framework of a Granger causal model. Employ-
ing data-driven techniques, we revealed intricate interactions among NAO,
sea surface temperature (SST), and sea ice extent (SIE), shedding light
on critical instabilities and feedback loops crucial for addressing climate
change38–51. Our approach had two distinct advantages: (i) It offered
a broader perspective for addressing climate change compared to tradi-
tional climate forecast models52. (ii) While previous studies had focused
on specific Arctic regions and seasons, our approach employed statistical
machine learning models to provide a comprehensive view of the entire
North Atlantic region.



UNTANGLING CLIMATE’S COMPLEXITY 13

Methodology

The primary goal is to analyse and model the climate variables and learn about
the intricate interdependences. The climate variables are typically observed and
analysed as multivariate time series datasets. Suppose,

xt = (x1,t, x2,t, . . . , xk,t)
T (1)

is a vector of different climate variables observed at time point t; where xk,t

represents the value of the kth climate variable at a time at t. The superscript
T denotes the transpose operation, which converts the row vector into a column
vector.

Simple measures of dependences

Autocorrelation function, also known as serial correlation53, is a statistical
concept that measures the degree of similarity between a given time series of a
climate variable and a lagged version of itself over successive time intervals. It
quantifies how much the current value of a climate variable is related to its past
values. For example, we may be interested in knowing if the past 30 days’ values
of SST influence the current value of SST. If this is so, that might help us to
predict the possible value of SST 30 days ahead from today. The autocorrelation
function (ACF) is described as follows:

ACF(k) =
Cov(xt, xt−k)√

Var(xt)× Var(xt−k)
(2)

where ACF(k), is the autocorrelation between the values of the climate variables
at time t and those at time t − k, and k represents the number of time units
(lags) by which the series is shifted. The covariance Cov(xt, xt−k) is between the
values of the climate variables at time t and those at time t − k; and Var(xt)
and Var(xt−k) represent the variance of the climate variables at the time t and
those at time t−k. A positive ACF value at lag k indicates a positive correlation
between the values of the same climate variables separated by k time units.

Cross-Correlation Function (CCF) is a statistical measure that indicates the
relationship between values of two different climate variables separated by a time
lag54. The cross-correlation function (CCF) is defined as:

CCF(k) =
Cov(xt, yt−k)√

Var(xt)× Var(yt−k)
(3)

where Cov(xt, yt−k) is the covariance between the variable xt at time t and the
lagged value of variable yt at time t − k. The CCF can take on positive, neg-
ative, or zero values. A positive CCF indicates a positive correlation between
the two variables at the specified lag, while a negative CCF indicates a negative
correlation. A CCF close to zero suggests no significant correlation between the
variables at that lag.
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Calculating Periodicity using ACF. For examining the enduring memory span of
each time series, which indicates the persistence of past observations influencing
current values, we utilised the following algorithms:

(i) Calculating the ACF (Eqn. 2) on training data.
(ii) Identifying periods P1, P2, · · · , Pms , where the autocorrelation ρm exceeds

a threshold s, with s = 1
M

∑M
m=1 |ρm − ρ̂|; here, ρm represents the mth lag

autocorrelation, ρ̂ is the median of all autocorrelations, and M represents
the maximum lag considered in our invastigation study.

To illustrate this algorithm, we take the example of the SPI time series of West
South Australia (coordinates: longitude 113.7158 and latitude -26.6969) and plot
the ACF (shown later). Utilising a dataset spanning 450 months, ranging from
June 1973 to November 2010, we detected three noteworthy periods: 216, 151,
and 60 months. These periods suggested that the current SPI value exhibited a
notable positive correlation with past SPI values, with periodicities of approxi-
mately 5.5 years for the specified location.

Modelling Temporal Structure and Seasonalities

Temporal patterns in data can be effectively modeled to uncover underlying
trends and periodic behavior. We introduce a comprehensive model (Ms) to
analyse the components contributing to the observed variability:

Ms : y(t) = β0 + β1t+ η(t) + z(t), (4)

where (Ms) is the model for a location s time series, y(t) represents the observed
variable at time t, β0 denotes the intercept, β1 is the trend coefficient, η(t) ac-
counts for the periodicity of the process, and z(t) captures short-term memory
using the Granger Causal Model (explained below).

In time series analysis, capturing seasonality is important for understanding
recurring patterns. Here, we present a model (η(t)) aimed at quantifying seasonal
effects:

η(t) =
ms∑
j=1

{ K∑
i=1

βji sin(i ∗ ωj ∗ t) +
K∑
i=1

γji cos(i ∗ ωj ∗ t)
}
. (5)

This equation breaks down seasonal variation into Fourier series, where ωj =
2π
Pj
, j = 1, 2, · · · ,ms, Pj is estimated via ACF, and ms denotes the number

of periods for sth location time series. Then, we typically applied the LASSO
(least absolute shrinkage and selection operator) technique55, a machine learn-
ing shrinkage method, to identify the most significant harmonics in the Fourier
model. LASSO selects harmonics that significantly reduce error, enhancing model
accuracy.

Modelling Spatial Correlation

To estimate y(t) at location s while accounting for spatial correlation, we intro-
duce the estimated value ŷs(t) for the t

th month, employing a spatially correlated
Gaussian process model,
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ȳs(t) = Σ(s, s′)[Σ(s, s′) + τ 2I]−1ŷ(t), (6)

where, ys(t)follows a Gaussian process with a mean of zero and a covariance
function defined as Σ(s, s′) = τ 2 exp−ρ|s− s′|2. Note that the covariance matrix
Σ(s, s′) models the spatial correlation between the location s and s′ for which
Var(ϵ) = σ2, and Σ(s, s′) = exp{−ρ|s− s|2}.

Granger-causal model

For the short-term memory or autoregressive structure, denoted as z(t) (men-
tioned above), we employ the Granger causal model. The Granger causality
model serves as a powerful tool for assessing the changing causal dynamics be-
tween variables over time8. Here, we present hypotheses regarding the influence
of one variable on another using this framework.

Null Hypothesis (H0):
The null hypothesis represents that the variable of interest (Z) is solely depen-

dent on its own historical memory, without any influence from other variables. It
can be represented as:

z(t) = β0 + β1z(t− 1) + · · ·+ βkz(t− k) + ϵ(t). (7)

This equation represents a time series model where z(t) is the variable of interest
at time t. The term β0 is the intercept, and β1, β2, . . . , βk are coefficients that
indicate the influence of past values of z(t) on its current value. The ϵ(t) term
represents the error or residual component of the model at time t, assumed to
follow a normal distribution with mean 0 and variance σ2.

Alternate Hypothesis (Ha):
Under the alternate hypothesis, we propose that the variable of interest (z(t))

is not only influenced by its own historical memory but also by the past values
of another variable (x(t)). This can be represented as follows:

z(t) = β0 + β1z(t− 1) + · · ·+ βkz(t− k)

+γ1x(t− 1) + · · ·+ γkx(t− k) + ϵ(t). (8)

In this equation, the coefficients γ1, γ2, . . . , γk represent the influence of past val-
ues of the variable x(t) on the current value of z(t). Each γi indicates the strength
and direction of influence from the corresponding lagged value of x(t). This model
allows us to investigate whether the variable of interest (z(t)) is affected by the
past values of another variable (x(t)), thereby examining potential causal rela-
tionships between them.

To determine whether the null hypothesis should be rejected, we assess whether
all coefficients γi in the alternate hypothesis are equal to zero. Specifically, the
null hypothesis H0 states that γ1 = · · · = γk = 0. To reject this null hypothesis in
favor of our alternate hypothesisHa, we need to ascertain if at least one coefficient
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Fig. 1. Time series plots illustrating the Standardised Precipitation
Index (SPI) for the south-western region of Australia are depicted
for (a) 1-month and (b) 12-month periods, covering a span of 58
years (1961-2018). In both plots, the 12-month moving average is
represented by the solid red line. A notable increase in the signal-
to-noise ratio is observed in the SPI 12-month series compared to
the SPI 1-month series, thereby enhancing the reliability of our
analysis59. This consistent observation was evident across all 194
monitoring stations, prompting our selection of the SPI 12-month
series for further analysis.

γi is not equal to zero. This rejection allows us to clearly understand the effect
of the variables under consideration.

Two case studies of climate complexity

Complex Dynamics of Drought in South-West Australia

Our first study delves into the complex interactions among climatic variables
such as SST, NINO 3.4, and IOD, examining their influence on the SPI in South-
West Australia.

Data Description. We utilised four primary climate variables: SPI, SST, NINO
3.4, and IOD indices, with a focus on South-West Australia. Our analysis in-
volved SPI monthly time series data spanning 58 years (1961–2018), obtained
from daily precipitation observations across 194 stations in the region, sourced
from the Bureau of Meteorology (BOM) website56. The datasets for NINO 3.4
and IOD were sourced from the NOAA website57,58. Our study area encom-
passes longitudes 113.72 to 137.12 and latitudes -26.70 to -35.73. Analyses were
conducted using monthly averaged SST data from 1982 to 201821.

This region holds significant agricultural importance, contributing substan-
tially to Australia’s gross agricultural production and grain exports. However,
the agriculture sector faces considerable vulnerability due to the unpredictable
nature of climate variables, resulting in reduced water supplies and impacting
wheat and broadacre livestock production60. Climate change exacerbates these
challenges, evident from increasing temperature and fluctuating rainfall anom-
alies12,14,59,61,62. Understanding these complexities is crucial, as they severely
impact agriculture, water resources, and public health.
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Fig. 2. Time-series plots illustrating (a) El Niño–Southern Oscilla-
tion (ENSO) NINO 3.4, (b) Indian Ocean Dipole (IOD), and (c)
Sea Surface Temperature (SST) data are presented, covering a pe-
riod of 37 years (1982-2018) for the south-western region of Aus-
tralia.

Results and Analyses. Our exploration into the dynamics between the Standard-
ised Precipitation Index (SPI) and climate variables—SST, IOD, and NINO 3.4
—across the extensive period from 1982 to 2018 revealed insightful findings. Time
series plots in Figure (1) depict the SPI for both one-month and 12-month pe-
riods spanning 58 years (1961-2018). The solid red line represents the 12-month
moving average, indicating a higher signal-to-noise ratio in the SPI 12-month
series compared to the SPI 1-month series. This observation, supported by59,
bolsters the reliability of our analysis. The consistency of this observation across
all 194 monitoring stations prompted us to select the SPI 12-month series for our
further analysis. Our investigation also unveiled a tendency for SST, Nin 3.4,
and IOD to exhibit mean-reverting behavior, as evidenced in Figure (2), where
values tended to regress to their means over time. This observation aligns with
findings from the Hurst exponent coefficient analysis63, Table (1) indicates a long
memory characteristic in these variables, with values surpassing 0.5.

Figure (3) provides illustrative insight into one of the 194 locations studied.
Utilising algorithm , we identified significant periodicities at intervals of 60, 151,
and 216 months. For instance, at the specific location (longitude 113.7158 and
latitude -26.6969), the SPI displayed a notable positive correlation with past SPI
values, recurring at approximately 5.5-year intervals. Such findings contribute
valuable insights into the complex interplay between precipitation patterns and
key climatic drivers, shedding light on the underlying mechanisms governing long-
term climate variability.

Figure (4) is a visual representation of the correlation matrix illustrating SPI
among the 194 locations. This matrix underscores the spatial correlation observed
across all locations, highlighting the cohesive nature of SPI dynamics throughout
the region.

To further explore the dynamics, we analysed cross-correlation functions ()
among monthly time-series of SPI, SST, IOD, and NINO 3.4 variables, as shown
in Figures (5) and (6). With a maximum lag of 120 months, these CCFs re-
veal mutual influences among climate variables. Figure (5) illustrates the Cross-
Correlation Function (CCF) spanning the years 1999 to 2008, revealing the in-
terplay among climate variables (SST, NINO 3.4, and IOD) and their mutual
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influence. This interaction results in a dense network, as depicted in Figure (7a).
In Figure (6), spanning 2009-2018, we observe that SST weakly couples with SPI
(Figure (6a)), while IOD does not directly couple with SPI (Figure (6b)). Con-
versely, NINO 3.4 couples with SPI (Figure (6c)). Additionally, IOD couples with
SST and NINO 3.4, though not reciprocally (Figures (6d) and (6e)). Notably,
NINO 3.4 and SST exhibit mutual coupling (Figure (6f)). This comprehensive
analysis, spanning 2009–2018, is depicted as a network diagram in Figure (7b).

Our hybrid model (), combining Fourier harmonics for long-term memory and
Granger causal modeling () for short-term memory, effectively captured SPI
dynamics. Validation through Root Mean Square Error (RMSE) assessments
demonstrated (Table (2)) the superiority of models incorporating LASSO selec-
tion and Gaussian process (GP) spatial correction (), particularly when con-
sidering SST as a covariate55. Notably, the incorporation of SST significantly
improved SPI estimation accuracy. In Figure (8), we presented the out-of-sample
estimates alongside the actual SPI values. Visual examination suggests satis-
factory performance of the proposed model (4) for December 2010. However,
it’s crucial to emphasize that this validation is specific to a single month. To
comprehensively evaluate the model’s effectiveness, we extended the assessment
period from December 2010 to November 2018 (eight years) and calculated the
out-of-sample Root Mean Square Error (RMSE) for all 194 locations. The me-
dian RMSE results are outlined in Table (2). The first model (Type I) used
Fourier series methods on SPI to capture long-term memory, while other models
(Type II, III, IV) integrated Nino 3.4, IOD, and SST as covariates, employing
various combinations and lags. Our investigation revealed that incorporating the
LASSO approach for the Fourier model with spatial correction notably enhanced
model performance, with Type III and Type IV models demonstrating superior
efficacy. Notably, SPI 12 months exhibited lower RMSE values across all Type
II, III, and IV models, indicating enhanced generalizability compared to SPI 1
month. Furthermore, our study identified SST as a significant factor influencing
SPI estimation, and its inclusion as a covariate contributed to improved model
performance.

Analysis of SPI trends in Figure (9) revealed evolving drought conditions, with
inland areas showing mild increasing trends, particularly post-2008. The negative
correlation between IOD and SPI until 2008 shifted to a positive correlation
thereafter, indicating a reversal in drought conditions64. Similarly, NINO 3.4
exhibited a consistent negative relationship with SPI, suggesting wetter conditions
in south-west Australia. Rising SST trends further corroborated expectations of
increasingly wet conditions in the region65.

Overall, our findings underscore the complex interplay of climate variables and
the evolving nature of drought conditions in south-west Australia, emphasizing
the importance of considering long-term trends and spatial correlations in climate
modeling and prediction. Specifically, the LASSO selection process within spatial
correction models, effectively enhances the accuracy of the proposed models.
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Fig. 3. The autocorrelation plot, with a maximum lag of 400
months, pertains to rainfall data obtained from a specific location
at longitude 113.7158 and latitude -26.6969. A dataset spanning
450 months, from June 1973 to November 2010, was utilized to
construct the autocorrelation function. Notably, three significant
periods of 216, 151, and 60 months were identified. These periods
indicate a substantial positive correlation between current and past
SPI values, suggesting a periodicity of approximately 5.5 years.

Index Hurst Value

Standard Precipitation Index (SPI) 0.71 (±0.05 )

El Niño Southern Oscillation (ENSO)
NINO 3.4

0.66 (±0.04)

Indian Ocean Dipole (IOD) 0.69 (±0.06)

Sea Surface Temperature (SST) 0.58 (±0.05)

Table 1. This table displays the Hurst exponent values along with
Bootstrap margins of error for all indices, including SPI, IOD, SST,
and NINO 3.4. These values collectively suggest the presence of
long memory within the system. The table was reproduced from
Yadav et al.21

North Atlantic Climate Instabilities

Our second study incorporates three distinct datasets: daily mean Arctic Sea
Ice Extent (SIE), daily mean Sea Surface Temperature (SST), and daily mean
North Atlantic Oscillation (NAO) index.

Data Description. The NAO and SST datasets are sourced from the NOAA web-
site58,66, while the SIE dataset is obtained from the National Snow and Ice Data
Centre’s website67. These datasets cover various time periods, with NAO data
available from 1950, SIE data from 1979, and SST data from 1982. Our analysis
spans from January 1982 to September 2019, encompassing 38 years.
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Fig. 4. A visual representation of the correlation matrix depicting
SPI-12 months across 194 locations reveals significant spatial cor-
relation across all locations.

Fig. 5. During the period from 1999 to 2008, cross-correlation func-
tion (CCF) plots were generated for the following pairs: (a) Stan-
dardized Precipitation Index (SPI) and Sea Surface Temperature
(SST), (b) SPI and Indian Ocean Dipole (IOD), (c) SPI and Nino
3.4, (d) IOD and Nino 3.4, (e) IOD and SST, and (f) Nino and
SST, with a lag of 120 months. The cross-correlation coefficients
indicate significant coupling among these indices (Nino, IOD, and
SST). All plots were generated using monthly temporal datasets.
The figure was reproduced from Yadav et al.21

Results and Analyses. Figure (10a) depicts the NAO plot spanning from 1979 to
2019. NAO, which signifies the difference in sea-level air pressure between the
Icelandic Low and the Azores, demonstrates a stationary process with a mean
of zero. The time series plot confirms the mean-zero stationary nature of NAO.
This observation was further validated through the Augmented Dickey-Fuller test,
as evidenced by the small p-value. Additionally, the Auto-correlation function
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Fig. 6. From 2009 to 2018, cross-correlation function (CCF) plots
were generated for the following pairs: (a) SPI and SST, (b) SPI
and IOD, (c) SPI and Nino 3.4, (d) IOD and Nino 3.4, (e) IOD and
SST, and (f) Nino and SST, with a lag of 120 months. In Figure (a),
despite a small CCF value, SPI and SST are observed to exhibit
coupling. Figure (b) reveals a one-way cross-correlation between
IOD and SPI, and vice versa, albeit statistically insignificant. Fig-
ure (c) highlights a significant coupling between Nino 3.4 and SPI.
Conversely, Figure (d) indicates that while IOD influences Nino
3.4, the reverse is not observed. Figure (e) suggests a minor effect
of IOD on SST, with no reciprocal influence observed. Notably,
both SST and Nino 3.4 exhibit significant coupling. The substan-
tial CCF coefficients indicate the significant influence of SST, Nino,
and IOD on each other. Plots were generated using monthly tem-
poral datasets. The figure was reproduced from Yadav et al.21

.

(ACF) analysis illustrated in Figure (10b) with a maximum lag of 5000 days
(approximately 13 years) reveals the presence of long memory.

Figure(11) represents the residual for SIE and SST obtained from the best fit
of Model (4). It is observed that both SIER and SSTR exhibit characteristics of
zero-mean stationary processes, similar to the North Atlantic Oscillation (NAO).

The Hurst exponent values detailed in Table (3) collectively underscore the long
memory inherent in residuals of SIE (SIER) and residual of SST (SSTR), with
values surpassing 0.5. Additionally, the correlation matrix in Table (4) highlights
robust correlations, particularly notable between SSTR and NAO, and between
SIER and SSTR.

To explore the potential presence of a feedback loop between the SIER, SSTR,
and NAO by employed the Granger causality test . Our exploration into Granger
causal models uncovers significant causal relationships among NAO, SIER, and
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(a) (b)

Fig. 7. The network analysis based on Cross-Correlation plots (5)
and (6) for the periods (a) 1999 to 2008 and (b) 2009 to 2018 re-
veals distinct patterns. In Figure (a), spanning 1999 to 2008, IOD
exhibits direct effects on SST, Nino 3.4, and SPI. However, in the
subsequent decade (Figure (b), 2009 to 2018), IOD’s direct impact
on SPI diminishes. Nevertheless, both SST and Nino 3.4 continue
to directly influence SPI in both periods, and vice versa. Con-
sequently, IOD indirectly couples with SPI. The significant CCF
coefficients indicate substantial mutual influences among these cli-
mate variables. The figure was reproduced from Yadav et al.21

Model Type I Type II Type III Type IV
SPI 1m 12m 1m 12m 1m 12m 1m 12m
Model without 0.75 1.26 0.80 0.49 0.80 0.51 0.84 0.38
Spatial Correction
Model with 7.21 0.96 6.40 0.45 8.66 0.46 24.21 0.37
Spatial Correction
Model with LASSO 0.75 0.77 0.80 0.35 0.80 0.34 0.84 0.34
and Spatial Correction

Table 2. The out-of-sample Root Mean Square Error (RMSE) val-
ues are calculated for all four types of models from December 2010
to November 2018, covering a period of 8 years. Here, the target
variable is SPI (1 month and 12 months). A brief overview of the
model types is as follows: Type I captures long-term memory solely
using Fourier Series methods. Type II incorporates NINO 3.4 and
IOD as covariates. Type III includes lag values of NINO 3.4 and
IOD as covariates. Type IV incorporates NINO 3.4, IOD, and SST
as covariates. It is observed that Type III and Type IV, considering
LASSO and GP correction, yield the lowest (best) RMSE value of
0.34 for estimating SPI-12 months. The table was reproduced from
Yadav et al.21
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Fig. 8. Plot of the Standardized Precipitation Index (SPI) for De-
cember 2010 using training data ranging from June 1973 to Novem-
ber 2010. The SPI values are categorized into four color ranges:
Black represents SPI ¿ 1 (Extremely Wet), Blue represents 0 ¡ SPI
¿ 1 (Wet), Red represents 0 ¿ SPI ¿ -1 (Dry), and Brown represents
SPI ¡ -1 (Extremely dry). The figure was reproduced from Yadav
et al.21

Fig. 9. Plots illustrating the average regression coefficient value
(δ) corresponding to NINO 3.4, SST, and IOD are displayed for the
period from 1995 to 2018. A red smooth curve represents the three-
year moving average of δ. The analysis highlights that NINO 3.4
consistently exerts a significant negative impact on SPI. In contrast,
SST exhibits a consistent negative correlation with SPI until 2004.
However, between 2005 and 2014, the δ of SST fluctuates between
negative and positive correlations. IOD demonstrates a negative
correlation with SPI until 2009, followed by a positive range from
2009 to 2013, and then returns to a significantly negative correlation
with SPI thereafter. The figure was reproduced from Yadav et al.21

SSTR. ANOVA F-tests reject null hypotheses, affirming Granger causality be-
tween these variables, as elaborated in Table (5). Furthermore, employing an
Akaike information criterion-based model selection process helps identify optimal
configurations for Model Equation .

The synthesis of these findings highlights the existence of a reciprocal feedback
loop involving NAO, SIER, and SSTR. Moving forward, we aim to demonstrate
the affirmative nature of this loop. By emphasizing the skewness of NAO in
Table (6), we provide insight into the bootstrap confidence intervals (C.I.) across
various time intervals—daily, weekly, and monthly. In a scenario where NAO
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Fig. 10. (a) Plot of the NAO time series over the period of
1979–2019 (b) Autocorrelation plot of NAO with a maximum lag of
5000 days (almost 13 years), indicating the existence of long mem-
ory. The figure was reproduced from Yadav et al.22

Fig. 11. Time series plots of (a) Residual of SIE (SIER) and (b)
Residual of SST (SSTR). The figure was reproduced from Yadav
et al.22

is stable, a skewness value of zero is anticipated. However, our results reveal
a negatively skewed distribution, suggesting a statistically significant departure
from stability. Notably, the skewness of NAO in Table (6) indicates a departure
from stability, hinting at underlying instability within its dynamics. In Figure
(12), we present visualizations of projected and observed trajectories within the
test dataset spanning 2010 to 2019. Our modeling approach demonstrates strong
performance, as indicated by Root Mean Square Error (RMSE) values of 0.36
for the training set and 0.41 for the test set, underscoring its high generalization
capability.

Hurst Exponent SIER SSTR

Simple R/S Hurst estimation 0.77 0.81
Corrected R over S Hurst exponent 0.83 0.89
Empirical Hurst exponent 0.82 0.90
Corrected empirical Hurst exponent 0.81 0.89
Theoretical Hurst exponent 0.53 0.52

Table 3. The Hurst Exponent value of the SIER, and SSTR using
different methods. The table was reproduced from Yadav et al.22
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NAO SIER SSTR

NAO 1.000 0.016 (0.063) -0.133 (< 2.2 ∗ 10−16)

SIER 1.000 -0.173 (< 2.2 ∗ 10−16)

SSTR 1.000

Table 4. Over a span of 38 years, from January 1982 to September
2019, the correlation matrix for NAO, SIER, and SSTR is exam-
ined. The accompanying P-values enclosed in parentheses provide
insights into the significance of the correlations. Notably, the cor-
relation between SSTR and NAO is statistically significant. Sim-
ilarly, a robust correlation is observed between SIER and SSTR.
However, the correlation between NAO and SIER exhibits rela-
tively weak significance. The table was reproduced from Yadav et
al.22

GC Models F-value p-value

SSTR + SIER → NAO 2.31 0.0178
NAO + SIER → SSTR 5.546 2.16× 10−6

NAO + SSTR → SIER 7.714 2.27× 10−10

Table 5. Table of F-value and p-value of different combinations
of Granger Causal Models. Small p-values indicate that there is
a feedback loop among NAO, SIER, and SSTR. The table was
reproduced from Yadav et al.22

Period Skewness C.I.

Daily -.210 [-0.242, -0.169]
Weekly -.213 [-0.305, -0.107]
Monthly -.194 [-0.368, -0.005]

Table 6. The presented table highlights the skewness of NAO, along
with bootstrap-derived confidence intervals (C.I.), across daily,
weekly, and monthly time spans. While an anticipated stable NAO
would exhibit a skewness of zero, our observations indicate a neg-
atively skewed distribution. This statistically significant result un-
derscores the presence of instability in NAO. The table was repro-
duced from Yadav et al.22

Our analyses revealed crucial instability driven by positive feedback loops
among melting SIE, rising SST, and the North NAO. Key findings included
reciprocal Granger causality between SIE and SST, mutual Granger causality
between SST and NAO, and an anti-correlation between SST and NAO. This
anti-correlation suggested that increasing SST trends may lead to more negative
NAO occurrences, a phenomenon supported by the negative skewness of the NAO
index across various time scales.
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Fig. 12. To evaluate the effectiveness of our proposed model a ma-
chine learning assessment was carried out. The training dataset
spanned from 1979 to 2009, while the test dataset encompassed
the years 2010 to 2019. The figure was reproduced from Yadav et
al.22

The negative skewness of the NAO index, despite its mean-zero stationary na-
ture, indicated impending critical instability, foreshadowing increased bouts of
frigid climates in the North Atlantic region. This study contributed to predict-
ing notable climate transformations by enhancing our understanding of critical
instability within complex climate systems. Overall, through the application of
statistical machine learning and interdisciplinary methods, as opposed to climate
modelling, we tried to enrich the understanding of the dynamic interplay among
crucial climate variables and its implications for the entire North Atlantic region.

Outlook

This review study contributes to untangling the complexity (transformations
and critical instabilities) of climate systems. Through the application of sta-
tistical machine learning and interdisciplinary methods, borrowed from physics,
mathematics, statistics, etc. we tried to give a flavour of the alternate approaches
to climate modeling.

Climate change presents numerous challenges across various domains, includ-
ing environmental, social, economic, and geopolitical aspects. Addressing these
challenges requires coordinated efforts at local, national, regional, and global
levels, including mitigation measures to reduce greenhouse gas emissions, adap-
tation strategies to build resilience, investments in clean energy and sustainable
practices, policy interventions, technological innovations, education, and public
awareness campaigns. We hope that these insights would pave the way for draft-
ing policies for action against climate change and addressing its multifaceted
challenges. Finally, we accept our limitations as scientists, encapsulated by the
famous quote:

“I used to think the top environmental problems were biodiversity
loss, ecosystems collapse and climate change. I thought that with
30 years of good science we could address those problems. But I was
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wrong. The top environmental problems are selfishness, greed and
apathy. . . and to deal with those we need a spiritual and cultural
transformation and we, (Lawyers) and scientists, don’t know how
to do that.” – James Gustave Speth, US Advocate
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  [Abstract: Computer simulation techniques are predominantly used to study many-particle 

systems having complex interactions. Although the simulation techniques are well developed, one 

bottleneck for their application to larger systems is high computational cost. Along with the 

improvement of software and hardware, the improvement of simulation techniques plays an 

important role in pushing the limit of computer simulations. The Nested Monte Carlo (NMC) 

technique is a promising technique that increases the efficiency of the basic Monte Carlo (MC) 

simulation. To study a particular statistical mechanical ensemble, MC simulation generates a 

Markov chain of states having the limiting distribution the same as that of the ensemble under 

consideration. In the NMC method, the primary Markov chain is aided by an auxiliary Markov 

chain with a simpler energy function. The use of a simpler energy function can make the simulation 

faster. In this review, the development of this method from the first principle is described and the 

applications of the NMC techniques in molecular and biomolecular simulations are described. The 

review also discusses the technical challenges and possible ways to improve this promising 

method.] 
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1. Introduction 

Statistical Mechanics is the bridge between mechanics (classical or quantum; in this manuscript, 

we will discuss only the classical part) and thermodynamics [1,2]. It can also be thought of as the 

theory for many-particle systems when all information about the system is not known. The theory 

for equilibrium statistical mechanics is well developed. However, for many of the problems, the 

calculation of the partition function is not possible due to complex interactions among the particles. 

Usually, for atomic and molecular systems numerical simulations are used to calculate the 

quantities of interest [3,4]. Molecular dynamics (MD) and Monte Carlo (MC) are the two most 

important computer simulation techniques to calculate different properties for a many-body system 

comprising atoms and molecules. MD solves Newton’s equation to move in the phase space of 6N 

coordinates for the N particle system. On the other hand, MC aims to estimate the average values 

of quantities by generating states of the statistical mechanical ensemble, under consideration, using 

importance sampling. For the simulation of biomolecules such as proteins and nucleic acids, MD 

is usually the method of choice [5]. However, MC has its advantage being more flexible and can 

be more suitable than MD in some problems [6,7]. One of the primary issues for both MD and MC 

is the significant computational cost involved. There have been multiple attempts to reduce the 

computational cost while getting useful information from simulations. One attempt is to reduce 

the number of particles in the system by combining different particles into one particle, the so-

called coarse-grained model [8], another is using a continuum model for solvation instead of 

explicit water molecules [9, 10]. A general way is to modify the simulation techniques using 

different tweaks and tricks [11-20]. In this review, a specific technique, Nested Monte Carlo 

(NMC), will be described that reduces the computational time [21]. For completeness, we will 

derive the working equations of a standard MC simulation before going to the details of the NMC 

techniques. Representative examples of the NMC techniques will be given. This review will end 

with possible directions to improve this technique.  

2. Methodology 

In the MC simulation, a distribution of first order Markov states (henceforth, Markov states) is 

generated with the condition that this distribution must follow the distribution for the statistical 

mechanical ensemble under consideration. A first order Markov chain (henceforth, Markov chain) 

depends only on the previous state and the total number of states are finite [3,4]. 



                                                                     Nested Monte Carlo                                                                              33                                                                            

Any state in a Markov chain can be reached from any other state and the reverse is also true i.e. 

from any state all other states can be reached. Then the flux from state i to all other states can be 

given by 

                                                             
i ij

j

P                                                                                (1) 

The flux to i from all other states is given by 
j ji

j

P where i
  is the probability of the state i 

(e.g. in canonical ensemble exp( )i iE  − , 
1

kT
 = , k and T are Boltzmann constant and 

absolute temperature, respectively and Ei is the energy of the i-th state) and ij
P  is the transition 

probability from state i to state j. At equilibrium, these two fluxes are the same and we can write 

                                                            i ij j ji
j j

P P =                                                             (2) 

In MC simulations usually a more stringent condition is imposed where for every pair of states 

the condition given in eq. (2) is enforced. 

 

                                                         i ij j ji
P P =                                                                        (3) 

 

In the canonical ensemble using this condition of microscopic reversibility, a distribution of states 

is generated having the limiting distribution as Boltzmann distribution. The recipe to ensure that 

the correct probability distribution is generated is given below. 

 

The transition probability is given by 

                                                        ij ij ij
P acc=   
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where 
ij is the probability of moving from state i to state j and 

ij
acc is the probability of 

acceptance of the state j from i. Equation (3) can be written as  

                                                         i ij ij j ji ji
acc acc  =                                                         (4) 

 

In a standard MC simulation  is taken to be symmetric and hence eq. (4) becomes  

                                                         i ij j ji
acc acc =                                                                 (5) 

                                                         
ij j

ji i

acc

acc




=  

As per Hastings-Metropolis criterion [3,4] the acceptance is considered as  

                                                         min 1,
j

ij

i

acc




 
=  

 
                                                                  (6) 

 

For actual calculations in a metropolis sampling (eq. 6) Monte Carlo simulation, one needs to start 

from any state of a system and then change the state of the system (there is no restriction on how 

to change the state of a system; for instance, for a molecular system, one can change the 

coordinates of one or a few particles). Then eq. (6) is used to check the value of the acceptance. If 

j i
   then the right hand side of eq. (6) is one and the new state is accepted. If not, then the 

value of acceptance is a fraction i.e. the trial state has X percent chance of being accepted. To 

ensure that, a random number between 0 and 1 is generated uniformly and acceptance ratio is 

compared with that random number. If the acceptance ratio is more than or equal to the random 

number then the state is accepted; otherwise, the old state becomes the new state. If it is done for 

a large number of steps, this recipe ensures a correct Boltzmann distribution. 



                                                                     Nested Monte Carlo                                                                              35                                                                            

 

Although the basic idea of MC simulation is clear, it is often computationally too expensive and 

this prohibits the use of it in many interesting applications. There is a continuous effort to make 

the MC simulation faster. NMC is one of these techniques that holds considerable promise. 

In the NMC method, two MC chains are generated; one with a cheaper potential energy function 

(auxiliary chain), and the other is the potential energy function of interest (primary chain). Here 

potential energy function (PEF) simply means the potential energy of different states of the system 

under consideration. The new state of the primary chain is generated by running a short MC 

simulation in the auxiliary chain. This can reduce the computational cost of the simulation 

significantly. This methodology is shown as a flowchart in figure 1 and schematically in Figure 2. 

The justification of this scheme is given below.
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     Figure 1:  Flowchart for one cycle of the NMC method 

 

In the NMC method, ij the probability of changing the state i to j is not taken as 

symmetric. Here the move to generate the new configuration is done by running a new MC Markov 

chain with a simpler PEF. The idea is to make the simulation faster as in this algorithm
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most of the time will be spent in propagating the simpler Markov chain.  The primary chain will 

be denoted as expensive (exp) and the auxiliary chain will be denoted as cheap (ch).  

Hence, eq. (4) can be written with the new notation (also, i and j are replaced by x and y, 

respectively) 

                                                  
expexpexpexp
yxyxyx  =                                                               (7)                                                                                          

                                     
expexpexpexpexpexp
yxyxyxyxyx accacc  =                                                (8)                                                                                     

 

Now the probability of the move ( ) is given by a short run using the cheap potential. For the 

Markov chain for the cheap potential one can write               

                                                           
ch ch ch ch

x xy y yx   =                                                                       (9) 

Now for the expensive Markov chain the probability of generating the next state is given by 

                                                            
exp

,1 1,2 1,
...ch ch ch

xy x y y   
−

=   

and the same for the reverse move,     

                                                         
exp

, 1 1, 2 1,
...ch ch ch

yx y y y y x   
− − −

=  
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,1 1,2 1,

exp

, 1 1, 2 1,

...

...

ch ch ch

xy x y y

ch ch ch

yx y y y y x

   

   

−

− − −
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The expression previous to equation (10) was obtained from the condition of detailed balance in 

the auxiliary chain. Now, the total acceptance can be written from equation (8) and (10) 

                                             

exp exp exp

exp exp exp

exp( ) exp( )

exp( ) exp( )

ch ch
xy y yx x

ch ch

yx x y x y

acc E E

acc E E

  

   

− −
= =

− −
                    (11) 

                                             
exp expmin(1,exp( ( )) exp( ( )))ch

xyacc E E = −                        (12) 

Where xy EEE −=  

However, there are challenges in using eq. (12). This acceptance condition says that the difference 

between energies in the x and y state should be similar for expensive and cheap chains to get good 

acceptance. 

In practical terms, it is necessary to think about an auxiliary potential energy function so that the 

rate of acceptance between cheap and expensive Markov Chains will be reasonable. If the 

acceptance is too low then this algorithm will not work. More on this issue is discussed in the next 

section.
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Figure 2:  A schematic representation of the nested Monte Carlo (NMC) method. The top curve is 

the primary chain, while the bottom is the auxiliary chain. The propagation of the system is done 

in the auxiliary chain (A to B) and a new state C on the primary chain is obtained. 

 

3. Applications 

One of the first applications of the NMC method was done by Muller and Warshel to calculate the 

free energy barriers for chemical reactions in solution [21].  In their case the auxiliary potential 

was taken from the empirical valence bond (EVB) method and the primary potential from ab initio 

(Hartree-Fock) method. Gelb has used this method with Lennard-Jones (LJ) potential as a test case, 
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where the full LJ potential is the primary potential, while cut and shifted potential is the auxiliary 

potential [22]. Luo has used it for protein systems, where the primary and auxiliary potentials are 

taken as all atom and coarse-grained potentials, respectively [23]. Bandyopadhyay has used NMC 

in several works [24-26], with applications on water clusters, where the primary potential is 

quantum mechanical and the auxiliary potential is classical. In one work Bandyopadhyay used 

quantum mechanical/molecular mechanical (QM/MM) potential for the primary chain and a 

molecular mechanical (MM) potential as the auxiliary chain [24]. Other groups such as Iftmie et 

al., Matusek et al. also used to connect MM and QM methods using this algorithm [27,28]. Calvo 

has used it by combining polarizable and non-polarizable potentials [29]. It is also used in 

molecular dynamics (MD); for instance, The equilibrium thermodynamics of dense fluid nitrogen 

was investigated using this method [30].  

   Although the range of applications is quite impressive there are several drawbacks of this 

method. To understand it let us define two efficiency metrics. 

                          

*cos _ exp

*cos _ exp *cos _

number of steps t ensive
speed up

number of steps
t ensive number of steps t cheap

jump frequency

=
 

+ 
 

 

 

_
Accepted jumps

jump efficiency
jumps attempted

=  

Here, cost_expensive and cost_cheap indicates the computational cost associated with the one step 

of the MC run with expensive and cheap potential energy functitons. Jump frequency is the ratio 

of the total number of steps in the auxiliary chain and the number of jump attempts made to move 

from the auxiliary chain to the primary chain and accepted jumps are the number of successful 

movements between auxiliary and primary chains. 

We want the computational speedup to be maximum. However, for that the jump frequency should 

be low i.e. the jump between primary and auxiliary potentials should be attempted less often. 
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However, the increase of speedup and jump efficiency is inversely related. If the jumps are 

attempted too often there is more chance of acceptance but this increases the computational cost. 

There have been attempts to optimize NMC; Coe et al. have optimized thermodynamic variables 

like T and P to get the maximum overlap between the primary and auxiliary potential functions 

[31]. Bandyopadhyay scaled the inverse temperature,  , used to propagate the auxiliary chain to 

get higher acceptance rate [32]. In a more recent work, Srivastava et al. have optimized the two 

distributions, primary and auxiliary, by minimizing the Kullback-Liebler (KL) divergence between 

them [33]. 

3.1 Remaining Issues 

The efficiency of this algorithm can be optimized even more. Already there are attempts to do 

incremental coarse-graining. In the work from the group of Zuckerman, they have changed the 

energy functiton incrementally with the small change between two consecutive potential energy 

functions [34].  The group of Juan De Pablo also developed an algorithm where a layered nested 

MC chain is used [35].  In both of these methods, as the two-layered NMC is replaced by a multi-

layer NMC, the difference of potential functions reduces between two consecutive layers giving 

rise to higher acceptance. However, the evaluation of a larger number of potential energy functions 

may increase the computational cost of the algorithm. The NMC method has got special impetus 

in recent years due to the advancement of machine learning (ML) techniques for molecular 

systems. One important application is this area is to develop faster potential energy functions using 

ML techniques. However, if the ML based PEF can be thought as the auxiliary potential then they 

do not need to be super accurate to the original PEF. Of course, the ML based PEF should have 

reasonable similarity with the primary PEF so that the acceptance between these PEFs become 

large enough for getting meaningful statistical averages.  Jadrich et al. have developed an NMC 

scheme where the primary potential function is based on Density Functional Theory (DFT) while 

the auxiliary chain comes from a ML potential [36]. They have used this method for investigating 

high-explosive materials.  

3.2 New Ideas that can be tried 

Srivastava et al. in reference 33 have studied symmetric and asymmetric ionic systems where the 

cheap potential function was improved using the KL divergence between primary and auxiliary 
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distributions. A more general approach can be thought of in the following way. The simulation 

starts with a reasonable auxiliary potential function and its parameters are periodically updated 

during the simulation (on-the-fly). However, it can be envisaged that initially, the jump frequency 

has to be large so that there will be enough data to parametrize the auxiliary potential. It can be 

used for a small number of degrees of freedom. Mathematically the minimization of the KL 

divergence (D_KL) between the two distributions is shown below. ( )
i

p x is the (reduced) 

distribution function coming from the primary chain, while ,( )
i

q x   is that coming from the 

auxiliary chain.    is the set of parameters that can be optimized to get a lower value of the KL 

divergence. x is a subset of all coordinates of the system and i denotes the states of the system. 

1

( ( ))
min ( || ) ( )

( );( )

N
i

KL i
i i

p x
D p q p x log

q x =

 
= 

 
  

The algorithm is described below. 

1. Initially run N number of short runs (where the jump frequency is one) having different   

values and calculate D_KL for each case. Estimate the value of   for which D_KL is the 

minimum. However, as these runs are short the estimate of D_KL is only approximate.  

2. In the second part of the algorithm run longer simulations with M (M<N)   parameters, 

where these   values are close to the one that gave minimum D_KL in the previous cycle, 

and again estimate the value of   for the minimum value of D_KL. This    can be a good 

starting point for the auxiliary potential. A schematic representation of this method is given 

in Figure 3. 

3. The next step is to optimize the jump frequency. Here, the   is kept fixed but the jump 

frequency is varied. An optimum value of the jump frequency is to be chosen while keeping 

the KL divergence low. This idea can be used to improve the acceptance rate in NMC 

simulations.
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Figure 3:  A proposed scheme to obtain a good auxiliary potential using Kullback-Liebler (KL) 

divergence. In the first cycle, short NMC runs with different auxiliary potentials are performed 

(lambda is a set of parameters controlling the auxiliary potential). In the second cycle, lambda 

values are chosen around the value that gave minimum KL divergence in the previous cycle. 

Longer NMC runs can be performed to get better   and a reasonable auxiliary potential. 

 

4. Conclusion 

In this review article, the details of the Nested Monte Carlo technique have been described. This 

technique has the potential to improve the efficiency of molecular simulation and has already been 

used in areas like chemical reactions in solutions, molecular clusters, protein structure and 

dynamics. It has also been used to run quantum mechanical and quantum mechanical/molecular 

mechanical (QM/MM) simulation using MM and machine learning based potentials as importance 

functions. The application of this method and technical challenges are illustrated with possible 

avenues for improvement.



44                                                                    P. Bandyopadhyay                                                                        
 

 

 

5. Acknowledgement 

The author would like to thank Dr. Rakesh Srivastava of VIT Bhopal for illuminating discussions 

and both Pooja and Alakananda Banerjee for help in making the figures. 

 

                                                       References 

1. L.D.Landau and E. M. Liftshitz, Statistical Physics, 1970, Pergamon Press. 

2. M. Kardar, Statistical Physics of Particles, 2007, Cambridge University Press, . 

3. M. P. Allen and D. J. Tildesley, Computer simulation of liquids: Second edition, 2017, Oxford 

University Press. 

4. D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to applications,  

2001, Academic Press; 2nd edition. 

5. A. Hospital, J. R. Goñi, M. Orozco, J. L. Gelpí, Advances and Applications in Bioinformatics 

and Chemistry, 2005, 8, 37.  

6. K. Binder, D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, 

2019, Springer. 

7. D. Zuckerman, Annual Rev. Biophysics, 2011, 40, 41. 

8. J. Jin, J. P. Alexander, A. E. P. Durumeric, T. D. Loose, G. A. Voth, Journal of Chemical Theory 

and Computation 2022, 18, 5759 

9. W. C. Still, A. Tempczyk, R.C.Hawley, T. Hendrickson, J. Am. Chem. Soc. 1990, 112, 6127. 

10. L. Xiao, C. Wang, R. Luo, Journal of Theoretical and Computational Chemistry, 2014, 13, 

1430001. 

11. Y. Sugita, Y. Okamoto,  Chem. Phys. Lett., 1999, 314, 141.



                                                                     Nested Monte Carlo                                                                              45                                                                            

 

12 F. Wang, D. P. Landau, Phys. Rev. Lett., 2001, 86, 2050. 

13. P. Singh, S. Sarkar, P. Bandyopadhyay, Chem. Phys. Lett, 2011, 514,357. 

14. A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol, 2011, 1, 826. 

15. F. Yasar, A.J. Ray and U.H.E. Hansmann, Phys. Rev. E, 2022, 106, 015302. 

16. C. Liu, E. Brini, A. Perez, K. A. Dill, Journal of Chemical Theory and Computation, 2020, 16, 

6377. 

17. J. Wang, P.R. Arantes, A. Bhattarai A, 2021. WIREs Comput Mol Sci., 11, e1521. 

18. W. Jiang, B. Roux,  J. Chem. Theory Comput., 2010, 6, 2559. 

19. H. Sidky, W. Chen, A.L. Ferguson, Molecular Physics, 2020, 118(5) doi: 

10.1080/00268976.2020.1737742. 

20. Y, Wang, J. M. L. Ribeiro, P. Tiwary, Current Opinion in Structural Biology, 2020, 61, 139. 

21. R. P. Muller, A. Warshel, Journal of Physical Chemistry, 1995, 99, 17516. 

22  L. D. Gelb, Journal of Chemical Physics, 2003, 118, 7747. 

23. T. Z. Lwin, R. Luo, Journal of Chemical Physics, 2005, 123, 194904. 

24  P. Bandyopadhyay, Journal of Chemical Physics, 2005, 122, 091102. 

25  P. Bandyopadhyay, Theor Chem Acc, 2008, 120, 307. 

26  P. Bandyopadhyay, Journal of Chemical Physics, 2008, 128, 134103. 

27. R. Iftimie, J. Schofield, Journal of Chemical Physics, 2001, 114, 6763. 

28. D. R. Matusek, S. Osborne,  A. St-Amant, J. Chem. Phys., 2008, 128, 154110. 

29. F. Calvo, Int J Quantum Chem, 2010, 110, 2347. 

30. J. D. Coe, T. D. Sewell and M. S. Shaw, Journal of Chemical Physics, 2009, 130, 164104. 

31. J. D. Coe, T. D. Sewell and M. S. Shaw, J. Chem. Phys., 2009, 131, 074105.



46                                                                    P. Bandyopadhyay                                                                        
 

 

32. P. Bandyopadhyay, Chem Phys Lett, 2013, 556, 341. 

33. R. Srivastava, R., P. Bandyopadhyay,  J Chem Sci, 2023, 135, 51.  

34. N. E. Jackson, M. A. Webb and J. J. de Pablo, J Chem Phys, 2018, 149, 072326. 

35. E. Lyman, F. M. Ytreberg and D. M. Zuckerman, Phys Rev Lett, 2006, 96, 028105. 

36. R. B. Jadrich and J. A. Leiding, J. Phys. Chem, 2020, 2020, 5497. 

  



Complexity in the distribution of the dynamics of foraging ants in

an ecosystem

R.K. Brojen Singh∗

School of Computational & Integrative Sciences,

Jawaharlal Nehru University, New Delhi-110067, India.

Abstract: The dynamics of foraging ants in a sub-populated colony in a certain

ecosystem is a very complex phenomenon which involve a continuous interaction of

the ants subjected to two identical food sources. This complicated interaction of the

ants allows the ants to follow in different trajectories leading to one of the two food

sources. We study a simple model of continuously interacting two groups of ants in

search of food leading to forage the two identical food sources. We then constructed

a Master equation of the model and followed van Kampen’s system size expansion

to approximate the model equation to a linear Fokker-Planck equation from which

we solved probability distribution of the single trajectory of the foraging ants of a

certain type. The asymptotic properties of the probability distribution indicates

that at sufficiently long time, the probability distribution of the foraging ants be-

comes constant showing a possible tendency to go to a fixed size of the foraging ants.
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I. INTRODUCTION

Simple interaction may result in complicated dynamics and processes. Mathematically,

interaction effects comes into existence when the effect of one variable depends on other

interacting variable. [1]. This interaction process may exhibit interesting dynamical phe-

nomena, such as, multistability including bistability, oscillation, chaotic dynamics and many

other phenomena [1]. The foraging ants of a certain colony of ants to two identical sources of

food is one example of simple model which is experimentally well studied [2, 3]. They showed

that this foraging ants are distributed with different sizes of the populations along the two

food sources. They showed that after sufficiently long time, the ants switch to forage to the

other food source [3, 4]. However, these behaviours of the foraging ants are not fully studied.

There have been simple models to address the possibility of bistability [9] which was

observed experimentally [3, 4]. They showed that even though the deterministic model

could not able to exhibit this bistability phenomena, the stochastic model simulation

results clearly showed it. Generally, the population of ants in a certain colony is finite

and small as compared to the whole population in the ecosystem. In such situation, the

dynamics of these ants are driven by fluctuations (noise) arising from random interaction

among the ants in the colony (intrinsic fluctuations) and random interaction of the ants

with the surrounding environment (extrinsic fluctuations) [5, 6]. These fluctuations cannot

be neglected but play important roles, such as, driving the system to nonequilibrium

state [7], in important decision making by them [6], in maintaining collective behaviour

[8] and many others. In some situations, these fluctuations could be responsible for

various dynamical properties, namely, bistability phenomenon [9]. However, the behaviour

of the distribution function of the foraging ants system was not addressed properly and fully.

Unlike deterministic method, stochastic approach to understand the behaviour of the model

systems of interacting molecules is quite important as the approach systematically takes

into account the effect of fluctuations and how it drives the system to various states [10, 11].

Stochastic approach allows to construct a model equation known as Master equation of

any model system consisting of randomly interacting molecules which undergo a certain

number of reaction channels [10, 11]. In general, this multi-variable Master equation cannot

R.K.Brojen Singh
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be solved analytically except for simple systems. However, numerically one can solve

such system consisting of a number of reaction channels representing interaction of the

molecular species in the system using stochastic simulation algorithm or Gillespie algorithm

[12]. Analytically, there have been approximate methods to solve Master equation [10, 11].

The van Kampen’s system size expansion method is one of the approximate methods to

solve Master equation by modeling the transition probability in the Master equation to

be dependent on the size of the jump [10]. This approximation allows to express intensive

variables to extensive one which can be expanded in terms of system’s size. This method

was shown to be quite accurate in comparison to other methods [13]. In this work, we

use this van Kampen’s system size expansion method to solve and addressed the be-

haviour of the probability distribution function of the foraging ants system, it’s asymptotic

behaviour and found to be quite in agreement with the experimentally found results in [3, 4].

We studied a simple model of foraging ants by Biancalani et. al. [9] and solved the

equivalent Master equation using van Kampen’s system size expansion approach. The

solved probability distribution function is analyzed and found to be dependent on time and

system size which is closely in agreement with the experimentally observed results [3, 4].

The work is organized as in the following, first we introduced the van Kanpen’s system

size expansion method to calculate probability distribution function, next results on the

foraging ants are presented, and lastly conclusion is given based on the results we obtained.

II. PRELIMINARY SET UP AND NOTATION

Consider a random physical variable x which have Markovian character, then the dynamics

of its probability distribution P (x, t) satisfy the following Master equation [10],

∂P (x, t|x′, t′)

∂t
=

∫
[W (x|x′)P (x′, t)−W (x′|x)P (x, t)] (1)

This Master equation (1) is the jump approximation of the Chapman-Kolmogorov equation

in differential form [11]. Here, W (x|x′) is the transition per unit time from the state x′ to

the state x. Now consider y = x− x′ for the first term and y = x′ − x for the second term,

then one can write transition rate as t(y, x) = W (x + y|x). Now the equation (1) can be
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expanded by the following Kramers-Moyal expansion [14, 15],

∂P (x, t|x′, t′)

∂t
=

∞∑
n=1

1

n!

[
− ∂

∂y

]n
[αn(x)P (x, t|x′, t′)] (2)

where, the parameter αn(x) is given by,

αn(x) =

∫
dx′ [x′ − x]

n
W (x′|x) (3)

The van Kampen’s power series expansion [16] allows to define extensive variable x (such as

number of molecules etc) and intensive variable u (concentration of molecules u = x
Ω
which

is independent of system’s size Ω) to approximate W (x′|x) as follows. The transition rate

W (x′|x) from state x to x′ is directly proportional to the jump size ∆x = x′−x. If we scale

the extensive variable x by extensive variable
x

Ω
, then W (x′|x) can be scaled as follows,

W (x′|x) ∝ W (x; ∆x) = Ωϕ
( x

Ω
;∆x

)
(4)

In such situation, ϕ is independent of Ω. Now, scaling x → x
Ω
and x′ → x′

Ω
to equation (4),

and then putting to the equation (3), we have,

αn(x) = Ω

∫
d[∆x][∆x]nϕ

( x

Ω
;∆x

)
= Ωα̃n

( x

Ω

)
(5)

Now, this α̃n is independent of Ω. From this analysis, Kampen introduced the idea of

possibility of expressing the variable x in terms of normalized variable u = x√
Ω

[16], such

that,

x = Ωϕ(t) + u
√
Ω (6)

where, the function ϕ(t) is to be determined. Now, using this variable transformation (6)

and putting in the equation (2) and after simplification, we have,

∂P (u, t|u′, t′)

∂t
−

√
Ωϕ′(t)

∂P (u, t|u′, t′)

∂u

=
√
Ω

[
− ∂

∂u

]
α̃1

[
ϕ(t) +

u√
Ω

]
P (u, t|u′, t′)

+
∞∑
n=2

Ω1−n
2

n!

[
− ∂

∂u

]n [
α̃n

{
ϕ(t) +

u√
Ω

}
P (u, t|u′, t′)

]
(7)

In the large Ω limit: lim
Ω→∞

x

Ω
= lim

Ω→∞

[
ϕ(t) +

u√
Ω

]
= ϕ(t) = finite (using equation (6)),

which is known as the thermodynamics limit recovering deterministic or macroscopic be-

haviour [17]. Now, equating the co-efficient of Ω1/2 from both sides of the above equation
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(7), and taking large Ω limit: Ω → ∞ (macroscopic limit), we have,

−ϕ′(t)
∂P (u, t|u′, t′)

∂u
= lim

Ω→∞

[
− ∂

∂u

]
α̃1

[
ϕ(t) +

u√
Ω

]
P (u, t|u′, t′)

= −α̃1[ϕ(t)]
∂P (u, t|u′, t′)

∂u
(8)

From which one can immediately retrieve macroscopic dynamics given below,

dϕ(t)

dt
= α̃1{ϕ(t)} =

1

Ω
α1{ϕ(t)} (9)

Now, expanding α̃n

[
ϕ(t) + u√

Ω

]
in powers of Ω− 1

2 and rearranging the terms, we have,

∂P (u, t|u′, t′)

∂t
=

∞∑
m=2

Ω−m−2
2

m!

m∑
n=1

m!

n!(m− n)!
α̃m−n
n

[
− ∂

∂u

]n
um−nP (u, t|u′, t′) (10)

Now, if we take large Ω limit i.e. Ω → ∞, then, only the two terms for m = 2 which are

independent of Ω will survive and all the rest terms will be vanished. The reduced equation

at this condition becomes,

∂P (u, t|u′, t′)

∂t
= −α̃′

1{ϕ(t)}
∂

∂u
[uP (u, t|u′, t′)] +

1

2
α̃2{ϕ(t)}

∂2

∂u2
P (u, t|u′, t′) (11)

Next, in order to obtain the expression for α̃1{ϕ(t)}, initial distribution at t = 0 is taken as

P (u, 0) = δ(u− u0). Then define a parameter s as,

s(t) = ln

[
α̃1{ϕ(0)}
α̃1{ϕ(t)}

]
(12)

so that s(0) = 0. Then, differentiating (12) with respect to t and using equation (9), we

have,

ds(t)

dt
=

d

dt
[lnα̃1{ϕ(0)} − lnα̃1{ϕ(t)}]

= − 1

α̃1{ϕ(t)}
d

dϕ
α̃1{ϕ(t)}

dϕ(t)

dt

= − 1

α̃1{ϕ(t)}
d

dϕ
α̃1{ϕ(t)} × .α̃1{ϕ(t)}

= − d

dϕ
α̃1{ϕ(t)} (13)

Now, coordinate transformation of equation (11) with respect to s is done P (u, t|u′, t′) →

P (u, s|u′, s′). Then, if transformations of u = ye−s, and P (u, s|u′, s′) = esH(y, s|y′, s′) are

done, the equation (11) reduces to the following heat equation,

∂H(y, s|y′, s′)
∂s

= − α̃2{α(t)}
2α̃1{ϕ1(t)}

e2s
∂2H(y, s|y′, s′)

∂y2
(14)
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This equation is analogous to heat equation which can be solved as an initial valued problem.

Using Fourier transform technique, we can solve the equation (14) and then putting back

the transformed function given above, we get,

P (u, s|u′, s′) =
1√
2πσ2

e−
(u−u′e−s)2

2σ2 (15)

where,

σ2 = e−2s

∫ t

t′
α̃2{ϕ(τ)}e2s(τ)dτ (16)

Now, the initial distribution is given by, P (x, 0) = δ(x−x′) = δ(x−Ωu′) and taking ϕ(0) = u′

and using coordinate transformation relations, the distribution function (17) becomes,

P (x, t|x′, t′) =
1√

2πσ2Ω
e−

[x−Ωϕ(t)]2

2σ2 (17)

This probability distribution function obtained using van Kampen’s system’s size expansion

[16] is the distribution function of the single trajectory of the particle system defined by

random variable x starting from an initial state (x′, t′). The parameters σ2 and ϕ(t) can be

obtained by solving the equations (16) and (9) through the equation (12) for the system.

III. RESULTS

The model considers a colony of ants of finite population N subjected to two identical food

sources [9]. The ants who choose food source 1 for collecting food is named as x1 and the

ants who collect food from the food source 2 is denoted by x2. The ants gathering food from

one food source can select ants of it’s own type from the population of ants in the colony.

Further, ants of the types x1 and x2 can interact among themselves and can switch from

one type to another depending on the availability of the food at the two food sources. The

model interaction of the foraging ants is given by the following reactions [9],

x1 + x2
r−→ 2x1 x1 + x2

r−→ 2x2

x1
k−→ x2 x2

k−→ x1 (18)

where, r and k are the classical rates of the respective interaction. Also x1 + x2 = N ,

where, N is the total population of the ants in the colony. If n is the population state
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of the individual type x1, then the population state of individual x2 is N − n. Now, the

dynamics of the configurational probability P (n, t|n′, t′) of the set of chemical reactions (18)

representing the model interaction at any instant of time t starting from an initial state n0

at time t0 is given by the stochastic Master equation. To solve this Master equation for the

probability distribution P (n, t|n′, t′), we followed the van Kampen’s system size expansion

method [16] as explained in the previous section. For this, we define n
N

as the intensive

variable. Following Kramers-Moyal expansion [14, 15] as given in the previous section and

taking the limitN → ∞, the Master equation reduces to linear order Fokker-Planck equation

as given by,

∂P (n, t|n′, t′)

∂t
=

∫
[W (n|n′)P (n′, t|n, t′)−W (n′|n)P (n, t|n′, t′)] dn′.

=
∞∑
i=1

1

i!

[
− ∂

∂n

]i
αi(n)P (n, t|n′, t′)

= −α̃′
1[ϕ(t)]

∂

∂u
[uP (u, t|u′, t′)] +

1

2
α̃2[ϕ(t)]

∂2

∂u2
P (u, t|u′, t′) (19)

The first term is the drift term with drift coefficient α̃′
1[ϕ(t)]u, whereas, the second term

denotes diffusive term with diffusive coefficient 1
2
α̃2[ϕ(t)] [18]. As shown in the previous

section, the solution of this linear Fokker-Planck equation using van Kampen’s system size

expansion is given by,

P (n, t|n′, t′) =
1√

2πσ2N
e−

[n−Nϕ(t)]2

2σ2 (20)

Now, in order to calculate ϕ and σ2 in the equation (20), we have to calculate the transition

probability W (x|x′) for the model reaction given in (18) and is given by,

W (n|n′) = [N − (n− 1)]
[ r

N
(n− 1) + k

]
δn,n′−1

+(n+ 1)
[ r

N
{N − (n+ 1)}+ k

]
δn,n′+1 (21)

Now, let us take ∆n = n′ − n. Then, following van Kampen’s system size expansion as

discussed in the previous section, it can be approximated W (n|n′) ≈ W (n′; ∆n). From the

above equation (21), we can easily calculate W (n′|n) from the delta function in the equation

as given below,

W (n′; ∆n) = [N − (n− 1)]
[ r

N
(n− 1) + k

]
δ∆n,−1

+(n+ 1)
[ r

N
{N − (n+ 1)}+ k

]
δ∆n,1 (22)
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From this approximated transition probability given by equation (22), the parameter α̃1 (n)

can be calculated from the first moment given by equation (5) putting n = 1 given by,

α̃1 = r(n− 1) + kN − r

N
(n− 1)2 − k(n− 1)− r(n+ 1)

+r
(n+ 1)2

N
− k(n+ 1) (23)

Taking large N−limit, rearranging the terms and taking n → ϕ, the parameter α̃1 [ϕ(t)] can

be expressed in terms of ϕ(t). Now, using equation (9), one can have the following linear

differential equation in ϕ(t),

dϕ(t)

dt
+ 2kϕ(t) ≈ kN − 2r (24)

This equation can be easily solved using integrating factor method, where, integrating factor

is given by, IF = e
∫
2kdt = e2kt. Then, multiplying the equation (24) by this IF , and

rearranging the term, we get,
d

dt

[
ϕ(t)e2kt

]
= kN − 2r Now, integrating this equation, we

get the solution for ϕ(t). The integration constant can be calculated from the initial valued

problem where, at t = 0, ϕ(0) → ϕ0, The solution ϕ(t) is given by,

ϕ(t) = ϕ0e
−2kt + (kN − 2r)

[
1− e−2kt

]
(25)

In order to calculate σ2 in equation (20) using equation (16), we have to calculate s and

α̃2[ϕ(t)] from the equations (12) and (5) respectively. From equation (12), substituting the

expression for ϕ(t) and after simplification of the expression, we have,

es =
a

b− ce−2kt
(26)

a =
N

2
−
[
ϕ0 +

r

k

]
b =

N

2
+ k

[
N − 2r

k

]
− r

k

c = ϕ0 + kN − 2r

The parameter α̃2 is calculated using the equation (5) by using the expression for transition

probability W (n′; ∆n) (22), α̃2[ϕ(t)] =
∫
d[∆n][∆n]2W (n′; ∆n) with n′ → n through ∆n =

±1. Then, we take large N limit and the expression for α̃2[ϕ(t)] by taking n → ϕ(t) is given

by,

α̃2[ϕ(t)] ≈ 2rϕ(t) + k(N + 2) (27)

R.K.Brojen Singh
54

R.K.Brojen Singh
R.K. Brojen Singh



Now, using the equations (26) and (12), the parameter σ2 is calculated using the equation

(16). The expression for σ2 is given by,

σ2 = 2re−2sI1 + k(N + 2)e−2sI2 (28)

I1 =

∫ t

0

ϕ(t)e2sdt

I2 =

∫ t

0

e2sdt

The integral I2 can be calculated using equation (26) and after rearranging the terms, we

have,

I2 =

∫ t

0

[
a

b− ce−ekt

]2
dt

=
1

2kb2

[
c2

b

(
1

c− b
− 1

ce2kt − b

)
− ln

(
b− c

be2kt − c

)]
(29)

The integral I1 can be calculated using the expression for ϕt in equation (25), after rear-

ranging the terms, we have,

I1 = (ϕ0 − kN + 2r)

∫ t

0

e−2kt

[
a

b− ce−2kt

]2
dt+ (kN − 2r)I2

=
ra2

kc

(
b− ce−2kt

a

)2 [
1

ce−2kt − b
− 1

c− b

]
+

1

2kb2
[(kN − 2r)2r]

(
b− ce−2kt

a

)2

×
[
c2

b

(
1

c− b
− 1

ce2kt − b

)
− ln

(
b− c

be2kt − c

)]
(30)

Now, the expression for σ2 can be obtained by substituting the expressions for I2 and I1

from the equations (29) and (30) respectively to the equation (16). The expression for σ2 is

given by,

σ2(t) =
ra2

kc

(
b− ce−2kt

a

)2 [
1

ce−2kt − b
− 1

c− b

]
+

1

2kb2
[(kN − 2r)2r + k(N + 2)]

(
b− ce−2kt

a

)2

×
[
c2

b

(
1

c− b
− 1

ce2kt − b

)
− ln

(
b− c

be2kt − c

)]
(31)

Now, the probability distribution of the population of ants of type n = x1 can be obtained

from the equation (20) with the expression (31). It is given by,

P (n, t|n′, t′) =
1√

2πNσ2
e−

[n−Nϕ(t)]2

2σ2 (32)
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where, ϕt is given by equation (25). The distribution function P (n, t|n′, t′) starting from

an initial state (n′, t′) is always a time dependent function with the condition σ⟩0 (positive

definite) which is also dependent on N .

A. Asymptotic state of P (n, t|n′, t′)

The asymptotic state of the probability distribution of the foraging ants can be obtained by

taking at sufficiently large time i.e. by taking lim
t→∞

P (n, t|n′, t′). In this limit, the expression

for lim
t→∞

σ2 can be obtained from the equation (31). Neglecting the value of ln(0) which is

undefined, we have the following expression for σ2
∞ as given by,

σ2
∞ = lim

t→∞
σ2

=

(
2b− c

c− b

)[
rb

kc
+

c2

2ka2b2
{2r(kN − 2r) + k(N + 2)}

]
(33)

The last factor in equation (33) is always positive because kN⟩2r for large N . Hence, in

order to have positive σ2
∞⟩0, the first factor has to be positive. In order to satisfy this

condition, this inequality 2b−c
c−b

⟩0 must be satisfied. From this inequality, the condition for

positivity of σ2
∞ is given by, 2b⟩c⟩b. Putting back the values of b and c from equation (26)

to this inequality, we have,

N(1 + k)− ϕ0

2− 1
k

> r > k

[
N

2
− ϕ0

]
(34)

Further, in this limit, we have from the equation (25) lim
t→∞

ϕ(t) = kN−2r which is a constant.

Then, putting these expressions to the equation (35), the asymptotic distribution function

is given by,

P (n, t|n′, t′) =
1√

2πNσ2
∞
e
− [n−N(kN−2r)]2

2σ2∞ (35)

We, then, calculate the mean number of ants of type n = x1 at sufficiently large time

using this probability distribution function (35). We calculated this ⟨n⟩ by taking z =

n−N(kN − 2r) and integrating it which is given by,

⟨n⟩ =

∫ ∞

−∞
nP (n, t|n′, t′)dn

=
1√

2πNσ2
∞

∫ ∞

−∞
ze

− z2

2σ2∞ dz +
N(kN − 2r)√

2πNσ2
∞

∫ ∞

−∞
e
− z2

2σ2∞ dz

= (kN − 2r)
√
N (36)
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The constant value of ⟨n⟩ indicates that at sufficiently long time, the particular n = x1 type

of ants will likely to forage with certain particular size of colony and similarly, the other

type of the ants will also forage with another size of colony. Also, since the variance σ2
∞ is a

constant, the size of the colony of the ants at sufficiently long time is likely to be constant.

The result (36) indicates that ⟨n⟩ depends on the choice of the constants r and k. In case

r < k, ⟨n⟩ ∼ kN
√
N ≤ N , which indicates that k ≤ 1√

N
. The remaining ants [N − ⟨n⟩] will

be foraging in the second food source.

This simple analysis indicates that the formation of colonies by the foraging ants in search

of food with random interaction among them is time dependent as indicated by time

dependent variance σ2(t) as in equation (31) and hence time dependent ⟨n(t)⟩. Therefore,

the size of the colonies of the respective ants in the ecosystem could be constantly changing

with time. But at the sufficiently long time, the size of the colonies of the ants is likely to

be constant as given ⟨n⟩ → constant as t → ∞ shown in equation (36). In this study, the

rates r and k are taken to be time independent constants. However, in general these rates

are time dependent and even the transition rates could be non-Markovian [19]. In such

situation, the dynamics of foraging ants and subpopulation sizes of the x1 and x2 will be

different and complicated with time dependent distributions.

IV. CONCLUSION

The foraging ants in a certain ecosystem is quite complicated process due to complicated

information processing among them driven by individual decision. We studied a simple

model of foraging ants [9] to understand the dynamics of single stochastic trajectory of the

interacting ants using standard van Kampen’s system size expansion [16] to solve the Master

equation of the model we considered. This van Kampen’s method assumes the transition

probability to be proportional to the size of the jump and allows to express the Master

equation to Kramers-Moyal series expansion in terms of extensive variables. This process

allows the Master equation to become linear Fokker-Planck equation at thermodynamic

limit which can be solved using proper transformation.
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The probability distribution function of a certain type of ant, which is the solution of the

simple foraging ants model using van Kampen’s system size expansion, is quite complicated

and is time dependent. The distribution function also indicates that the observables

(mean, standard deviation and higher order cumulants), which can be calculated from

this distribution function, are time dependent. This means the sizes of the colonies of

the foraging ants are changing with time due to continuous interaction of the ants in

the ecosystem. However, at sufficiently long time, this probability distribution function

becomes time independent which is a constant. This indicates that the size of the colonies

occupied by each type of ant in the ecosystem is likely to be constant because the mean

and standard deviation are all become constants.

The analysis showed complicated results from the simple model. The interaction involved in

the simple model is associated with complicated information processing which is driven by

individual’s decision during the process. This simple model can also be used to understand

basics of the opinion formation during the public discourse etc. Even one can generalize it

for multi-species interaction model. If we consider M-species (for example, ants subjected to

identical M-food sources) system, then the 2-species model reactions (18) can be extended

to M-species reactions. The probability distribution in the M-species Master equation will

be M dimensional which will be difficult to solve. But one can solve it numerically by using

Gillespie algorithm [12].
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[Abstract: This paper’s major goal is to develop mathematical epidemiological
models using fractional-order derivatives. Different epidemiological models in science
and engineering have been effectively constructed and analysed because of fractional cal-
culus’s persuasive nature. Here, we presented a susceptible-exposed-infected-recovered
(SEIR) structure based on Caputo fractional-order for hosts, and a susceptible-exposed-
infected (SEI) structure based on Caputo fractional-order for mosquitoes, to study the
dynamics of Zika and Dengue virus transmission.For this reason, we used the classical
SEIR-SEI compartmental model to analyse the dynamics of the Zika fever outbreak that
struck El Salvador in 2015–16. The updated model has an advantage over the traditional
model since it considers the memory effect feature of nonlinear differential equations of
fractional (non-integer) order. Additionally, we looked at the fractional-order model
after the traditional approach using data from the ZIKV and DENV outbreaks that
happened in Cape Verde in 2009 and Costa Rica in 2016–17, respectively. The effect of
different fractions for the fractional-order based differential equation is also investigated.
In the end, we came to the conclusion that the fractional-order model outperforms the
equation-based classical model in terms of numerical findings.]

1 Introduction

In recent years, infectious diseases have become a significant threat worldwide. More
than 335 infectious diseases were reported between 1940 and 2004 in the global human
population [23]. Different microorganisms led to the birth of various infectious diseases,
which had a profound effect on economies and world health. [22]. In the meantime, a
number of infectious disease outbreaks in the past few decades, including Zika, Dengue,
Chikungunya, West Nile, and Yellow fever, have been linked to vector-borne illnesses.
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The matter garnered significant attention, and the threat posed by them is a cause for
great concern [22]. Our primary focus was on Dengue Virus (DENV) and Zika Virus
(ZIKV), two vector-borne illnesses. Since its discovery in Africa in 1952, ZIKV infection
has been recognised as an emerging illness. A reported outbreak in Yap, Micronesia be-
tween April and July 2007 [11] was the primary source of ZIKV infection in humans.An
outbreak that occurred in French Polynesia between October 2013 and April 2014 fol-
lowed this. [7], as well as cases in other Pacific nations. A rapid mutation in the ZIKV
in 2015 caused another outbreak in South America [31], and so on. The dengue virus,
a flavivirus carried by mosquitoes, is the source of DENV infection. A dengue infection
can cause a headache, nausea, joint discomfort, high fever, skin rash, and other symp-
toms. Usually, these signs appear three to fourteen days following the illness. Those
infected with DENV typically need two to seven days to recover. Severe side effects from
DENV infection can include low blood pressure, low blood platelet and plasma counts,
and more.

A common female mosquito, Ades aegypti and Ades albopictus, is the vector of DENV
and ZIKV illnesses. Due to the shared vector, infections and co-infections with these
viruses have been documented in various parts of the world, including Asia [24]. Due
to their similar clinical signs, it can occasionally be challenging to differentiate between
the two infections. Nonetheless, there have been reports of ZIKV transmission through
various routes, including blood, maternal-fetal, and sexual. ZIKV transmission through
these channels is negligible in comparison to vector-borne transmission. As a result, we
disregarded the possibility that ZIKV could spread through these channels in the current
model and assumed that mosquitoes are the only source of infection. It is during the
rainy and warmer seasons that these diseases are most likely to spread. [1]. Understand-
ing the transmission behaviour of these diseases is crucial, which will help invade during
disease transmission. Mathematical modelling is an aspect of understanding the trans-
mission dynamics of diseases and predicting the progression of diseases. Much research
has been done on the mathematical modelling of vector-borne diseases. Although, the
most worrying aspect is that we are still unable to accurately predict the progression
dynamics, which may be more far-reaching than we anticipated. Therefore, we need
to improve our knowledge of the dynamics of vector-borne transmission by adding new
methods to the current models. Creating strategies for disease prevention and control
is crucial during an epidemic. For a very long time, mathematical modelling has been
used to shed light on the global spread and management of numerous viral infectious
illnesses. [4, 13, 18].

In order to study transmission dynamics, the majority of these investigations concen-
trated on deterministic integer-order compartmental modelling methodologies. Certain
models with extra presumptions and restrictions have been put forth in an attempt to
achieve the goal. These, however, are ill-suited to integrate host and vector memory with
learning behaviour on the dynamics of vector-borne disease transmission. The memory
effect trait can be used with fractional-order derivatives, as evidenced by recent stud-
ies on viral infections. which yields superior results to the traditional method of using
integer-order derivatives. [10]. Even the traditional compartmental model based on
integer-order derivatives was unable to accurately explain the disease’s outbreak statis-
tics data. Without any doubt, we could find several infectious disease progression models
based on fractional-order derivatives in the literature [25, 32, 5]. Few studies are in liter-
ature on ZIKV and DENV modeling of disease progression dynamics based on fractional-
order derivatives [28, 3, 12, 20]. Pooseh et al.[28] studied the SIR-SI fractional-order
derivative-based modeling for dengue infection progression with Riemann-Liouville-type
derivatives. To get an approximation of the original fractional system’s solution, they



Vector-borne transmission dynamics model based on Caputo ... 63

employed traditional techniques. Through numerical analysis, scientists determined that
the ideal fractional order is 0.987, based on data from an outbreak that occurred in 2009
in Cape Verde. This is due to the fact that, in contrast to the sixty-two in the classical
model, the percentage inaccuracy is thirteen. The researchers utilised two alternative
fractional orders and fractional Caputo derivatives in 2013 based on the assumption that
human behaviour differs from that of mosquitoes [10]. Li et al.[20] presented a novel
and all-encompassing fractional-order dengue fever system in 2019 that makes use of
Caputo derivatives in various orders. The findings demonstrated that, in comparison
to other models, The numerical solutions with the predicted parameter values for the
multi-term fractional-order dengue fever model suit the data better. Alkahtani et al.
[3] developed a mathematical model for the progression of the Zika virus. Both the
equilibrium point and the reproductive number were shown here. Using the Adams
type predictor-corrector rule for the Atangana-Baleanu fractional integral, the model
was analytically solved. Under certain conditions, the existence and unique exact so-
lution were shown. A fractional Zika virus model with mutation was constructed and
presented in a paper [2]. The virus creates new birth issues in infected pregnant women
and spreads further in society. The model is simulated on actual Colombia data. They
described the proposed model’s equilibrium points, invariant property, and positivity of
the model solution. The computation of the reproduction number is done using a next-
generation technique. A new mathematical model explaining how the Zika virus spreads
from people to mosquitoes was provided by [29]. The stability of the equilibrium point
was examined, The feasibility and equilibrium points of the system were calculated, and
they employed the fractional-order Caputo derivative. Using the fixed point theory, they
also demonstrated that the model has a single, unique solution. Few more studies have
been done on ZIKV with fractional order derivative-based modelling, but none of the
studies compared classical and fractional-based modelling for ZIKV with the support of
simulation on real-time outbreak data.

The current study expands on the traditional SEIR-SEI mathematical model, which
has previously been used to analyse the dynamics of the El-Salvador outbreak of ZIKV
sickness in 2015–16. [16] into Caputo type fractional-order derivative-based SEIR-SEI
model. Here, we considered different fraction values for both virus and host populations
(mosquito and human) in this model. Both models were solved simultaneously; the clas-
sical SEIR-SEI model was solved using Runge-Kutta fourth-order numerical methods,
whereas the fractional-order based model was solved using Adams-Bashforth-Moultan
numerical algorithm [19]. During the numerical solution, the disease parameter values
have been retrieved from the actual outbreak of ZIKV and DENV data of Costa Rica
during 2016-17 and Cape Verde during 2009, respectively. The fractional-order-based
model’s solution was best fitted with actual outbreak data provided that value of R2

are 0.8355 and 0.8834 quantified for ZIKV and DENV data respectively. In contrast,
the solution of the classical SEIR-SEI model was poorly fitted with the actual out-
break data and R2 quantified 0.6681 and 0.7014 for ZIKV and DENV respectively. This
fractional-order-based modelling is due to the memory effect property. Every state of
fractional-order based modelling depends on all the previous states, although classical
integer-order based current state is only based on the first initial state. Hence, this
Caputo type fractional-order derivative mathematical modelling captures epidemic with
high accuracy. Consequently, the enumeration of accurately basic reproduction numbers
was impactful. Estimating disease parameters and basic reproduction numbers have a
leading role in the control and progression of the disease. Henceforth,According to this
study, vector-borne systems may benefit more from fractional-order derivative modelling
than from integer-order modelling. This modelling approach may also be applicable to
other viral illnesses such as COVID-19, influenza, etc.
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2 Methods

2.1 The classical mathematical model

In order to track the development of both ZIKV and DENV infection, this work makes
use of the SEIR compartmental model for hosts and the SEI model for vectors. According
to this idea, the infectious status of each individual determines the division of the human
population into distinct classes. Every class depicts a person’s state of health at infection
time t. We hypothesised that the populations of the vector (mosquito) and host (human)
would mix uniformly. Every human and mosquito in their respective populations has
the same chance of becoming infected and spreading the sickness. While the mosquito
population is separated into three groups—susceptible (Sv), exposed (Ev), and infected
(Iv)—the human population is classified into four mutually exclusive groups: susceptible
(Sh), exposed (Eh), infected (Ih), and recovered (Rh). Nh(t) represents the entire
population of humans, while Nv(t) represents the population of mosquitoes. In this
case, Nh(t) = Sh(t)+Eh(t)+ Ih(t)+Rh(t) and Nv(t) = Sv(t)+Ev(t)+ Iv(t). The same
model, which is described by a system of non-linear Ordinary Differential Equations
provided in the system (1), was taken into consideration for ZIKV and DENV. The
model is as follows:

dSh

dt
= −αhShIv,

dEh

dt
= αhShIv − βhEh,

dIh
dt

= βhEh − γhIh,

dRh

dt
= γhIh, (1)

dS′
v

dt
= µv − µvS

′
v − αvS

′
v

Ih
Nh

,

dE′
v

dt
= −µvE

′
v − βvE

′
v + αvS

′
v

Ih
Nh

,

dI ′v
dt

= βvE
′
v − µvI

′
v,

where, S′
v(t), E

′
v and I ′v signifies proportion of vectors with the property 0 ≤ S′

v, E
′
v, I

′
v ≤

1 given in equation (2).

S′
v(t) =

Sv

Nv
, E′

v(t) =
Ev

Nv
, I ′v(t) =

Iv
Nv

. (2)

In this system, αh denotes the rate at which susceptible humans are exposed and is equal
to a × b × m, where a is the number of mosquitoes bites per day per human, b is the
transmission probability from infectious mosquito to suspected human per bite and m
is the average ratio of mosquito to human, βh is the rate at which exposed humans are
become infected, γh is the rate at which infected humans get recovered. Similarly, αv is
the rate at which susceptible mosquitoes are exposed and is equal to a× c (independent
of vector to human ratio), where c is the transmission probabilities from an infected
human to infected mosquitoes, βv is the rate at which exposed mosquitoes become
infected. Moreover, the parameter µv is the mortality rate of vectors (mosquito life
span). Finally, the rate from the infected human population to the recovered human
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population is denoted by γh. For a better understanding of parameters, the above-
mentioned model (1) can be defined accordingly as in a system of equations (3).

dSh

dt
= −abmShIv,

dEh

dt
= abmShIv − βhEh,

dIh
dt

= βhEh − γhIh,

dRh

dt
= γhIh, (3)

dS′
v

dt
= µv − µvS

′
v − acS′

v

Ih
Nh

,

dE′
v

dt
= −µvE

′
v − βvE

′
v + acS′

v

Ih
Nh

,

dI ′v
dt

= βvE
′
v − µvI

′
v,

where, Nh=Sh + Eh + Ih +Rh and N ′
v=S′

v + E′
v + I ′h.

While creating this model, we make the following assumptions: (a) The transmission
does not take into account human-to-human transmission such as sexual transmission,
mother-to-child transmission, or blood transmission; (b) The total human population
(Nh) is kept constant because demographic changes, migration, new births, or deaths
are not taken into account in the human population, and (c) The total vector popula-
tion (Nv) is likewise kept constant throughout the work by taking into account the same
rates of birth and death.

2.2 Preliminaries of fractional derivatives

Although fractional derivative equations (FDEs) are not new, there are novel applica-
tions in several fields of study. In a 1695 letter, Leibniz foresaw the idea of FDEs [21].
Consequently, Abel was the first to investigate tautochrone difficulties indirectly using
these FDEs in 1823. Following that, a number of foundational papers based on FDEs on
different aspects were published [6]. While there are numerous intriguing definitions of
fractional derivatives, the Riemann-Liouville concept is the most well-known [14]. The
definition of the order α Riemann-Liouville derivative is:

Dα
0+f(t) =

1

Γ(n− α)
(
d

dt
)n

∫ t

0

f(s)

(t− s)α−n+1
ds, n = [α] + 1, (4)

where, 0 < α < 1 for α ∈ R, n is an integer, Γ represents the gamma function and [α]
represents greatest integer value of α. This approach leads to the following two issues.
First, Riemann-Liouville does not hold differentiation of the constant [9], i.e.,

Dαc =
c

Γ(1− α)
t−α ̸= 0, c = constant. (5)

Therefore, if the constant value of the differential operators is substituted by a Riemann-
Liouville differential operator of order α ∈ (0, 1), it is unable to solve the differential
operators [6]. As a result, our assumption that the total number of human (Nh) and the
total number of human (Nv) should remain constant will no longer apply to the changed
model. The failure to combine with the initial conditions of the form defined above in
the classical model [[9], pp. 54–55] is the second problem with fractional derivatives of
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the Riemann-Liouville type.

Consequently, rather than using Riemann-Liouville, we took into account the Caputo
type fractional derivative in this study [[9], Chap. 3]. It is described as:

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

fn(s)

(t− s)α−n+1
ds, n = [α] + 1. (6)

2.3 Fractional order derivative based model

FDEs have received a lot of interest lately from a variety of fields, including biology,
physics, engineering, and the biological sciences. It has been noted that compared to
classical models based on integer order derivatives, fractional order derivatives can offer
a greater agreement between real and simulated data [10, 9]. Consequently, the provided
model makes sense when expressed in terms of fractional order derivatives, which has a
benefit because of its memory effect property. According to the memory effect property,
a model’s future state may be influenced by both its current and previous states.
Consequently, the updated model (7) is obtained by substituting the Caputo derivative
of order α for the integer derivative in model (3):

dαSh

dαt
= −abmShIv,

dαEh

dαt
= abmShIv − βhEh,

dαIh
dαt

= βhEh − γhIh,

dαRh

dαt
= γhIh, (7)

dαS′
v

dαt
= µv − µvS

′
v − acS′

v

Ih
Nh

,

dαE′
v

dαt
= −µvE

′
v − βvE

′
v + acS′

v

Ih
Nh

,

dαI ′v
dαt

= βvE
′
v − µvI

′
v,

where α ∈ (0, 1] is the order of fractional derivative and the fractional operator dα is
identical to the classical first derivative for α = 1.

Additionally, we can see from a basic dimension analysis that the left and right
sides of the equations for model (7) have mismatched dimensions. This model’s left
side has dimension (time)−α, according to a basic dimensional analysis. The terms
a, βh, γh, µv, βv on the right-hand side have the dimension (time)−1; a closer examination
reveals that the remaining terms on the right-hand side are dimensionless. As a result,
the dimension of this model’s right side is (time)−1. We guarantee that the system’s
equations on the right side have the same dimensions as those on the left. Diethelm [10]
developed a fractional order deterministic model for dengue disease in order to solve
this issue of fractionalization. Sardar (2015) [30] et al. used this method to analyse a
similar model and achieved the better results. Consequently, we attempted to address
the discrepancy in dimensions by applying the method that Diethelm [10] outlined.
Furthermore, this model is further refined by the fact that human population behaviour
differs from that of mosquitoes. Therefore, two distinct fractional differential operators
α ∈ (0, 1] and β ∈ (0, 1] for humans and mosquitoes, respectively, can be added to the
model (7) to make it more realistic. The refined and updated model, denoted as (8), is
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as follows:

dαSh

dαt
= −aαbmShIv,

dαEh

dαt
= aα(b)(m)ShIv − βα

hEh,

dαIh
dαt

= βα
hEh − γα

h Ih,

dαRh

dαt
= γα

h Ih, (8)

dβS′
v

dβt
= µβ

v − µβ
vS

′
v − (a)β(c)S′

v

Ih
Nh

,

dβE′
v

dβt
= −µβ

vE
′
v − ββ

vE
′
v + (a)β(c)S′

v

Ih
Nh

,

dβI ′v
dβt

= ββ
vE

′
v − µβ

v I
′
v.

It is clear that the model (8) reduces to the classical model (3) as α → 1 and β → 1. It
is found that the total population Nh and Nv in the redesigned system are constant by
a straightforward computation in model (8). Consequently, the fractional order initial
value problem’s mathematical formulation is covered in this section. The classical model
(3) is a deterministic integer order system where no information from the previous state is
carried over to the current state. In biological science, visco-elastic studies, etc., it is well-
established that the condition of many systems depends on the characteristics of earlier
times [27]. Understanding the memory and learning behaviours of hosts and vectors
is essential to comprehending the dynamics of mosquito-borne illness transmission. In
order to obtain better and more precise findings, we thus attempted to generalise the
classical model, which contains information about its many prior states.

Furthermore, understanding the dynamics of infections requires an understanding of
the Reproduction number. The predicted numbers of secondary infections caused by
single infections in a population where all individuals are susceptible is known as the
reproduction number (R0) [8]. It is employed to calculate a disease’s propensity for
transmission. Generally speaking, the fundamental reproduction number (R0) needs to
be larger than one in order for illnesses to spread across vulnerable populations. Using
the techniques from [17], the basic reproduction number for the fractional order model
(8) has been determined as follows:

R0 =

√
(aαbm)(aαc)ββ

v

γα
hµ

β
v (µ

β
v + ββ

v )
. (9)

R2 is a coefficient of determination which provide us how best fit predicted data with
the actual outbreak data. The calculation of R2 can be obtained follows as:

SSE =

n∑
i=1

(ŷi − yi)
2, (10)

SSR =

n∑
i=1

(ŷi − ȳ)2, (11)

R2 =
SSE

SSR+ SSE
, (12)

where ŷi and yi are ith predicted and corresponding actual outbreak value respectively.
ȳ is mean of actual outbreak values.
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Figure 1: Outbreak dynamics and classical model estimated dynamics by eq. 3 of
infected human Ih(t) in the (a) Costa Rica 2016-17 Zika outbreak, (b) Cape Verde 2009
Dengue outbreak.

2.4 Simulations

The Pan American Health Association (PAHO) from 17th week of 2016 to 15th week
of 2017 and the government of Cape Verde, respectively, provided the data for two
outbreaks that happened in Costa Rica in 2016 for ZIKV and another one in Cape
Verde Island in 2009 for DENV disease [26, 10]. Since the mathematical model has
parameters, which we know exist, the parameters can be obtained in the literature by
using a particular computation or by using the original data. Here, Table 1 displays
the parameter ranges that were found in the relevant literature. Table 2 provides the
beginning conditions for the parameters for both sets of data. Through the use of Runge-
Kutta fourth order, we were able to simulate the classical model (3) on the MATLAB
platform. The results we obtained are displayed in Figures 1a and 1b, respectively,
as a plot between the simulated model and the actual number of reported cases. The
two curves in both figures were compared, and the results indicated that there was a
poor fit between the outbreak’s real data and the data produced by the model using
the specified parameter values. The model’s estimate of infected persons was a little bit
high. Therefore, we employ the generalisation of the model to obtain better and more
accurate findings.

3 Results

By building the model with memory in both the host and vector population, the frac-
tional order model (8) is used to mimic the ZIKV and DENV transmission as a general-
isation from a classical model (3). To our knowledge, there isn’t an analytical solution
available for solving and analysing the FDEs. We used an effective predictor-corrector
numerical technique, briefly reported in [6, 30], to numerically solve the fractional order
problem presented in model (8). In the Caputo fractional derivative, zero is considered
the beginning point. Since adopting lesser step sizes, such as 10−4 days, does not mate-
rially alter the findings, 10−2 days has been chosen as the step size for this system of the
equation [10]. We looked for the fractional order that best fits the data on the reported
number of cases using the parameter values and starting values listed in Tables 1 and 2,
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Table 1: Baseline values and their ranges of parameters used in the models.

Parameters Baseline values Baseline values Ranges
(Costa Rica) (Cape Verde)

a 0.3 0.7 [0.3,1]
b 0.4 0.4 [0.1,0.75]
m 5 5 [1,10]
c 0.6 0.5 [0.3,0.75]
1/γh 8 3 [3,14]
βh 0.03 0.36 [0.1,0.75]
βv 0.1 0.36 [0.1,0.75]
1/µv 17 10 [4,35]

Table 2: Opted initial values for the for the simulation of model.

Variable Costa Rica Cape Verde
(Zika) (Dengue)

Sh 10000 55784
Eh 100 300
Ih 4 216
Rh 0 0
Sv 100000 168000
Ev 20 20
Iv 10 10

respectively. A search on the interval (0, 1] yielded the derivative order value, or α, β ∈
i/100: i=1,2,3,.....,100. We began with α = 1 and decreased it step-by-step until we
arrived at an optimal number. For the data from Costa Rica (α = 1 and β = 0.47) and
Cape Verde (α = 0.99 and β = 0.48), a satisfactory approximation was found. Figures
2a and 2b display the plot of numerical solutions of the system of FDEs with fixed
parameter values. Compared to the standard solution (α, β = 1), these figures showed
that variations in the values of α and β can result in a more accurate approximation of
actual outbreak data. Compared to greater values of α, it is evident that smaller values
of α result in somewhat better approximations of the real data during the early stages
of the epidemic.

Moreover, we also calculated the basic reproduction number for the fractional order
model using the equation (9). For Cost Rica outbreak, R0 comes out to be 1.86558 for
α = 1, β = 0.47 and R0 = 1.6286 for the Cape Verde with the values α = 0.99, β = 0.48.
Both the values of R0 come out to be > 1, indicating that the Zika and Dengue virus
is spreading in both regions. Also, through the previous studies of disease outbreaks,
R0 is found to be greater i.e. 0.5 − 6.3 in El-Salvador, Brazil and Columbia [16] and
2.6− 4.8 in French Polynesia [15].

The behaviour of Basic Reproduction Number R0 with the variation in different
parameters defined for the epidemic model is shown in Figure 3a-3f for both Costa Rica
(Left panel) and Cape Verde (Right Panel) outbreaks of Zika and Dengue virus. Figure
3a and Figure 3b, depicted that R0 varies from 0-20 with respect to change in mosquitoes
biting rate a ∈ [0, 5] for different value of recovery rate i.e. γh ∈ [0.0714, 0.3333] for
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Figure 2: Infectious dynamics of real outbreak data, estimated by classical model (i.e.
α = 1) and (a) estimated by the Caputo fractional model with α = 1 and β = 0.47 for
Costa Rica 2016-17 Zika outbreak, (b) estimated by the fractional model with α = 0.99
and β = 0.48 for Cape Verde 2009 Dengue outbreak.
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Costa Rica and Cape Verde epidemic regions, respectively. It can be noticed through
the figure that R0 is directly proportional to mosquitoes biting rate with any value of
γh. Further, we can notice that R0 also depends on γh (recovery rate) as it increases
with a decrease in the value of γh at any fixed value of a (mosquito’s biting rate). Figure
3c and Figure 3d, illustrated inversely proportionate behavior of Reproduction number
(R0) to the death rate of mosquitoes (µv) with the change in values of mosquitoes biting
rate, a ∈ [0.3, 1]. The range of R0 comes out to be [0.5, 6] for both the data with respect
to the µv. Here, the relationship curve also indicates the upward shift with the increase
in the mosquito’s biting rate value. Moreover, Figure 3e and 3f, also showed that R0 is
in direct relationship with the mosquitoes biting rate with variation in the value of µv,
but the curve showed the reciprocal behaviour with a death rate of mosquitoes µv as
the value of R0 decreases with the increase in value of µv.

We also simulated Sh, Rh and Ih for different values of fractional order for concern
data sets. Three different values of α and β are considered in each plot. When α = 1,
the system is in the classical order. The plots Fig. 4a-4f depicted that variation in Sh(t),
Rh(t) and Ih(t) versus time t for different values of α & (=) β = 1, 0.9, 0.8 by fixing
the other parameters value. With the same set of parameters, it is noticed that the
susceptible population decreases dramatically in a comparatively short amount of time,
which appears to be somewhat unrealistic (Fig. 4a-4b). These graphs demonstrate that
utilising an approximate solution with a basic fractional model will yield surprisingly
superior outcomes. A classical model that is converted to a fractional one, however,
becomes sensitive to the order of differentiation since even a little variation in the frac-
tional order value affects the outcome significantly. Figs. 4c-4d make it evident that
the fractional derivatives α and β continuously influence the approximate solutions. As
a result, the results demonstrate that by using fractional derivatives, we were able to
enhance the dynamics of the SEIR model.

4 Discussion

Dengue and Zika are still illnesses that could pose a risk to people all across the world.
By using fractional order, this research is thought to be a generalisation of a traditional
epidemic model. We developed and examined a ZIKV and DENV model based on
fractional order derivatives infection progression during the Costa Rica 2016-17 and
Cape Verde 2009 outbreaks, respectively. Additionally, we assessed the model using
various fractional operator values and noted its impact at various levels utilising the
same parameters as initially stated in the classical model. It is determined that a non-
linear FDEs model yields a more accurate outcome by simulating infection using the
non-linear fractional model. Here, accuracy could be achieved by tuning a single variable
fractional operator, while integer-based modelling needs to tune several parameters. We
quantitatively showed that the fractional order model yields more exciting and accurate
results, using the Adams-type predictor-corrector method. This model assumes that
the population is homogeneously distributed; this assumption might be expanded in the
form of an in-homogeneously distributed population during the development of fractional
order modelling. This in-homogeneity attempt has been made using network-based
modelling. This approach might be the future scope for this modelling.

5 Conclusion

We developed and examined a model for the evolution of dengue and ZIKV infections
during the outbreak in various cities, based on fractional-order derivatives. Additionally,
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Figure 3: Basic reproduction number (R0) varying with crucial parameters involved in
Caputo model, plot (a) R0 versus mosquitoes biting rate a, with varying γh for Costa
Rica, (b) R0 versus mosquitoes biting rate a, with varying γh for Cape Verde, (c) R0

versus µv with varying mosquitoes biting rate a for Costa Rica, (d) R0 versus µv, with
varying mosquitoes biting rate a for Cape Verde, (e) R0 versus mosquitoes biting rate, a
with variation µv for Costa Rica, (f) R0 versus mosquitoes biting rate, a with variation
µv for Cape Verde.
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Figure 4: Numerical solution of Caputo model (8) at different fractions values with
other parameters are as Table 1. (a) Sh(t) of Costa Rica 2016-17 Zika outbreak at
α and β = 1, 0.9, 0.8, (b) Sh(t) of Cape Verde 2009 Dengue outbreak at α and β =
1, 0.9, 0.8, (c) Ih(t) of Costa Rica 2016-17 Zika outbreak at α and β = 1, 0.9, 0.8, (d)
Ih(t) of Cape Verde 2009 Dengue outbreak at α and β = 1, 0.9, 0.8, (e) Rh(t) of Costa
Rica Zika 2016-17 outbreak at α and β = 1, 0.9, 0.8, (f) Rh(t) of Cape Verde 2009
Dengue outbreak at α and β = 1, 0.9, 0.8.
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we assessed the model using various fractional operator values and noted its impact at
various levels utilising the same parameters as initially stated in the classical model.
It is determined that a non-linear FDEs model yields more accurate findings than an
ODEs model by simulating infection using both linear and non-linear fractional mod-
els.Ultimately, we came to the conclusion that the fractional-order model outperforms
the equation-based classical model in terms of numerical findings.

Abbreviations

SEIR: Susceptible-exposed-infected-recovered
SEI: Susceptible-exposed-infected
ZIKV: Zika Virus
DENV: Dengue Virus
FDE: Fractional differential equation
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