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The Kinetic Energy Spectrum for Turbulence in a 

Stably Stratified Fluid : Kolmogorov or The Elusive  

Bolgiano-Obukhov? 

 

Jayanta K Bhattacharjee 

School of Physical Sciences, 

Indian Association for the Cultivation of Science, 

Jadavpur,  Kolkata 700032, 

India 

 [Abstract : In a homogeneous isotropic fluid the kinetic energy spectrum 

is supposed to follow the Kolmogorov law. This fact has been very clearly 

established both experimentally and numerically. More than sixty years ago it was 

predicted independently by Bolgiano and by Obukhov that for a stratified fluid  

(like our atmosphere which supports a temperature gradient), the kinetic energy 

spectrum should be different. The degree of stratification is determined by the 

Richardson number Ri  which is a ratio of the “stratification potential energy” to 

the kinetic energy. It would be “natural” to find the Bolgiano-Obukhov spectrum at 

a relatively high Richardson number. However, till now this spectrum has never 

been clearly seen.  

 In this article we introduce and discuss the energy spectrum for fully 

developed turbulence and try to provide the reason behind the inability to capture 

the Bolgiano-Obukhov spectrum. We use an analysis based on an almost forgotten 

Heisenberg- Chandrasekhar picture of turbulence to establish the crossover 

function for Kolmogorov to Bolgiano-Obukhov scaling in fully developed 
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turbulence in a stably stratified fluid. We find that there are actually two 

crossovers-one from the Kolmogorov to the Bolgiano-Obukhov form and the other 

from the Bolgiano-Obukhov to a pre-dissipative form. For a given Richardson 

number, the former happens at a wave-number proportional to 
3/4Ri  and the 

latter at a wave-number proportional to 
3/16Ri . This severely restricts the range 

over which a pure Bolgiano-Obukhov scaling can be seen and explains the elusive 

nature of that scaling law].   

1. Introduction to Turbulent Flows 

One of the striking results in the theory of fully developed 

turbulence in a homogeneous fluid is the scaling law for the energy 

spectrum ( )E k  at a given wave-number k  in the inertial range. The 

energy spectrum is related to the total kinetic energy K  as 

 π



     
3

2 3

3

0

1 1
( ) ( ) ( )

2 2 2
j j

d k
K u d r u k u k E k dk

V
   … (1.1) 

In the above ( , )ju r t is the random turbulent velocity field, ( )ju k

its Fourier transform, the angular bracket denotes an appropriate 

ensemble average and V is the total volume of the fluid. The inertial 

range is the range of spatial scales where the wave-number k ( inverse of 

the spatial scale ) is smaller than wave-numbers in the dissipation range 

(where viscous forces dominate ) and larger than those corresponding to 

the large length scales where energy is injected in the fluid to maintain a 

non-equilibrium steady state. The scales are easily visualized from the 

stirring of a cup of tea to mix the sugar. We stir the liquid at a scale 

which is characterized by the radius of the cup ( a few centimetres ). This 

energy is dissipated by the viscosity of the liquid which operates at a 



         THE KINETIC ENERGY SPECTRUM FOR ETC.                   87 

 

sub-micron scale. The ratio of the scales is about five orders of 

magnitude. This is where Kolmogorov1  argued that the energy spectrum 

has the universal form 5/3( )E k k . 

To get a feel for the logic behind the Kolmogorov result , we 

write down the primary equation for three dimensional incompressible 

fluid flow with velocity ( 1,2,3)iu i   [ incompressibility implies 0i iu   

( divergence free flow )] 

2
i j j i i i iu u u p u f                                            …  (1.2) 

In the above equation, the pressure is denoted by „p‟ (it is actually 

the pressure per unit density i.e. the constant density of the 

incompressible fluid has been absorbed in the pressure), f  is an external 

force and   is the kinematic viscosity. To find the rate of change of the 

total kinetic energy of the fluid, we need to consider the quantity 

3
j j

d ru u  and use Eq.(1.2) to substitute for ju .  

We will get four terms. The equality ( )j j j jdVu p dV u p     

holds since the velocity field is divergence free and  using Gauss‟s law 

this integral becomes the surface integral of the vector pu  with the 

surface as far away as we want. In particular the surface can be chosen 

where the fluid velocity vanishes ( there is no source ) and hence the 

integral is zero. Similarly for the term ( )i j j iu u u , we can write it as 

2( / 2)j ju u  and the logic of the previous sentence makes the integral 

of this term zero as well. The integral 
2

j ju u dV can be written as the 



88                           JAYANTA K BHATTACHARJEE 

integral of the negative of  
2

j iu  and is the energy loss due to the 

viscous action. On the other hand, ( )j jdV u f  is the rate of energy 

supply by the external force [ the stirring action for the example of the 

coffee cup] . If these two effects are equal in magnitude then the total 

kinetic energy of the fluid is maintained and we have a non-equilibrium 

steady state of maintained turbulence. The supply of energy is at large 

length scales  and the dissipation is at the smallest scales. The energy 

which is introduced at a constant rate   is pictured to cascade down the 

scales without loss to be dissipated by viscous action at smallest scales.  

Kolmogorov argued that if one is not too close to the dissipation 

scale and also significantly away from the energy input scale, then the 

energy spectrum ( )E k of turbulence is determined by only the wave-

number „k‟ and the strength   of the cascading energy. The dimension of 

( )E k  is 
3 2/L T  and that of    is 

2 3/L T . Since ( )E k  is determined by 

  and k , we write ( ) m nE k C k ( the self-similar nature of the 

turbulent flow made famous by the Leonardo da Vinci drawing ), where 

C is a dimension-free universal constant and the exponents need to be 

found by a dimensional analysis. We see that 
3 2 2 3/ /m n mL T L T , 

leading to 2 / 3m   and 5 / 3n   . Hence
2/3 5/3( )E k C k  , the so-

called Kolmogorov spectrum. This is one of the best known results in all 

of turbulence and generally known as Kolmogorov‟s 5/3 law. 

 We now shift our attention to the stably stratified fluid where the 

density decreases with height. The stratified fluid was first studied by 

Bolgiano2 and Obukhov3, who argued that one is supposed to encounter 
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an energy spectrum ( )E k  which scales as 
11/5k

 in this case. We will 

work with a positive temperature gradient in the z-direction which makes 

the stratification stable. The constant positive temperature gradient is 

/T d  with the bounding surfaces as the x-y planes located at 0z   and 

z d . The steady state temperature profile is linear in z . We work in the 

Boussinesque  approximation4 where the buoyancy induced temperature 

fluctuation around the steady state shows up only in the linear order in 

the velocity dynamics. We denote the dimensionless temperature 

fluctuation by /T Tθ δ  . We also include a random forcing term 

( , )f r t in the velocity dynamics to inject energy at large length scales. 

With the buoyancy force included, the velocity dynamics (Navier-Stokes 

equation) becomes 

  α θ ν
ρ


         2

0

ˆi
t i j j i i i

p
u u u Tg z u f      …   (1.2) 

The pressure field is denoted by ( , )p r t , 0  is a mean density (will 

be absorbed in the pressure subsequently) , is the expansion coefficient 

and   the kinematic viscosity. The dynamics of θ for stable stratification 

(including an external random fluctuation ( , )h r t  at large length scales ) 

is 

θ θ λ θ      2 ( , )z
t j j

u
u h r t

d
                                 … (1.3) 

 The dynamics of the total kinetic energy K follows from Eq. (1.2) 

as  

 
23 3 3

t z i j j jV K Tg u d r u d r f u d rα θ ν          … (1.4) 
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The first term on the right hand side ensures that K is not 

conserved in the unforced, inviscid limit. In a similar vein, from Eq. (1.3) 

we have 

 θ θ λ θ θ       
22 3 3 3 31 1 1 1

[ ]
2

t zd r u d r d r hd r
V V d

  … (1.5) 

Between Eqns. (1.4) and (1.5), we have a conserved quantity E in 

the unforced and dissipation regime which is like a sum of kinetic and 

potential energies5, since 

   

α θ

ν λα θ θ

    

       



  

2 3

2 23 3 3

1 1
( )

2

1
[ ( ) ]

t t

i j j j

E K Tgd d r
V

u d r Tgd d r f u h d r
V    …(1.6)

 

The first two terms on the right hand side cause dissipation at 

very short length scales and the third and fourth terms inject energy at 

large length scales. In the unforced and inviscid limit (ν=λ=f=h=0) the 

quantity ( )E K Tgd Uα    where 
2 31

2
U d r

V
θ   is conserved 

and from the structure of Eq (1.6), this quantity E is produced at large 

length scales (small wave-number scales) and flows down to short length 

scales (large wave-numbers) where it is dissipated. To compare K and U 

on the same footing it is best to make them have the same dimension and 

this is done by defining 
2
0U u U  where 

2
0u  is a mean square velocity. 

The conserved quantity in the inviscid, unforced limit is now 

2
0

Tgd
K U K RiU

u

α
   where the dimensionless number 
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2
0

Tgd
Ri

u

α
  is called the Richardson number. For the stably stratified 

fluid, this is the energy that is conserved in the absence of dissipation 

and external forcing. However, the energy spectrum of turbulence that 

one talks about is always the kinetic energy spectrum. For the energy 

flux, however, it is the total energy and that can lead to a very different 

story for the scaling laws6,7. It should be noted that for the convective 

situation ( top-heavy) dealt with in Refs8-16, the terms which are 

quadratic in the  -field in Eq.(1.6) appear with a negative sign. This 

makes definite statements about the sign of the energy flux difficult as 

the flux may depend on the value of the Prandtl number. A detailed 

discussion can be found in Verma et al17. 

When the Richardson number becomes high, the U  term can 

dominate the “energy” transfer and the energy spectrum will be changed 

because the transfer will now be engineered by the θ² term. The rate of 

transfer εθ will have the dimension of θ²/t where t is time. Once again, it 

is important to appreciate what happens at large Richardson numbers. 

The scale to scale transfer of the energy E is now dominated by the 

dynamics of the temperature fluctuation θ(r,t). Apparently θ is 

“dimensionless” but this is not the dimension one is talking about. The 

dimension is the scaling dimension and corresponds to the dimension 

that one gets if Eq. (1.3) is going to be invariant under a scale 

transformation. This implies that the constant rate εθ  at which the energy 

is transferred in the inertial range will have the dimension L2/T5. The 

energy spectrum E(k) in this limit will be determined by εθ and k and is 

easily seen to be     



92                           JAYANTA K BHATTACHARJEE 

2/5 11/5
1( )E k K kθε

                                                          … (1.7) 

where K1 is a numerical constant. The above spectrum is known 

as the Bolgiano-Obukhov scaling law23. Unlike the Kolmogorov 

spectrum, this spectrum has hardly ever been observed. Two important 

exceptions are the investigations of Kumar et al6 and Rosenberg et al7. 

Even in these two studies, the 11/5 spectrum is seen over only one 

decade at the most. 

The scaling that we describe in Eq. (1.7) is isotropic while the 

situation that we have described is quite clearly anisotropic. Many of the 

references18-23  do observe an anisotropic spectrum. This is why this issue 

was studied from a scaling perspective in Refs24-25 and it was found that 

the isotropic Bolgiano-Obukhov  spectrum would be a reasonable 

approximation when the Richardson number is of O(1) and the vertical 

length scale is of 
3
0( / )O u ε which is in agreement with the finding of 

Rosenberg et al7. In this moderately anisotropic situation, Eq.(1.7) has to 

be understood as an angle averaged result26.  

In a recent work27, we suggested, based on a preliminary 

examination of the local energy transfer associated with Eq.(1.6), that the 

Bolgiano –Obukhov scaling should be seen at wave-numbers higher than 

those at which the Kolmogorov scaling is seen. This is anti-„common-

sensical‟ since for large k , we will have 
5/3 11/5k k   and hence 

Kolmogorov spectrum should dominate. However, the „common-

sensical‟ result has never been seen. In fact, an examination of the data 

presented by Rosenberg et al7 was actually seen to be consistent with the 

violation of naive reasoning. In fact, for convective turbulence a similar 

qualitative behaviour in co-ordinate space was seen by Kunnen et al15. 
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Our  next goal is to discuss the intricacies associated with  the scaling of 

the energy spectrum E(k) for the stably stratified fluid. The major issues 

(which have prevented a clear cut observation of the Bolgiano-Obukhov 

spectrum) are: 

(A) The crossover from Kolmogorov spectrum to Bolgiano-Obukhov 

spectrum is determined by the combination 3/4kRi  with the 

Kolmogorov region corresponding to 3/4kRi <<1 and the Bolgiano-

Obukhov region corresponding to 3/4 1kRi  . This means that even 

if one is at a reasonably high Richardson number, one could be 

seeing a Kolmogorov spectrum if the condition 3/4 1kRi   is not 

satisfied. What is very likely, even if it is , one will be caught in a 

crossover region where the exponent will seem to lie between 1.67 

and 2.2. The crossover region is consequently vital and  we will 

obtain an exact differential equation describing the course of it. 

(B) The problem gets further complicated by the fact that the Bolgiano-

Obukhov spectrum crosses over to an intermediate scaling in the 

pre-dissipative regime. This crossover happens if 3/16 1kRi   and 

hence if the Richardson number is not ideally chosen, a clear run of 

the exponent 2.2 would hardly be seen. We will provide an exact 

form for this crossover as well. Between these two crossovers , it 

becomes non-trivial to see a pure Bolgiano-Obukhov spectrum and 

this could be the reason that , unlike the Kolmogorov spectrum, 

there are very few instances of finding a pure Bolgiano-Obukhov 

spectrum. 

In Sec II, we extend the previous works of Chandrasekhar28 and 

Heisenberg29,30 to study the crossover from the Kolmogorov to a 
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dissipative regime. We show how the Heisenberg formulation works for 

the moderately high Richardson number case (energy transfer by the 

thermal fluctuations only) and obtain a closed-form expression for the 

spectrum describing the transition from a Bolgiani-Obukhov form to a 

pre-dissipative form. In Sec III we generalize this approach to obtain a 

gradual crossover from the Kolmogorov spectrum to the Bolgiano-

Obukhov one. We conclude with a brief summary in Sec IV. 

2  Bolgiano-Obukhov to dissipation range crossover 

In this section we extend the Heisenberg –Chandrasekhar[28-30] 

formulation to the large Richardson number situation where the energy 

dynamics of Eq. (1.7) contains a significant contribution from thermal 

fluctuations and the dynamics is primarily the dynamics of the θ-field as 

given by Eq.(1.3). In Fourier space the θ-dynamics is given by 

 

3
2 3

3
( ) ( ) ( ) ( )

2
j j

d q u
p i V p u p q q p p

d
θ θ λ θ

π
              … (2.1)                       

The total energy E must include the “potential energy” term in 

Eq. (1.12) and in Fourier space is written as  

 

3
2 *
0 3

( ) ( )
2 2

d p
E K u Ri p pθ θ

π
                                          … (2.2)                                           

Dropping all constant pre-factors, we write this as 

3 ( )E K Ri d pF p   , where 
*( ) ( ) ( )F p p pθ θ  and is the 

amount of “potential” energy at the scale p. It should be noted that the 

last term on the right hand side of Eq.(2.1) is like the first term with the 

momentum 1 1p d   and hence has been ignored. In the large 

Richardson number situation it is the time derivative of E at a given scale 
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which is dominated by ( )F p . The energy spectrum that one talks about 

is, however, always the kinetic energy spectrum unless specifically 

mentioned otherwise. 

The dynamics of the potential energy is the primary contributor to 

the energy flux at moderate Richardson numbers. The dynamics of F(p) 

is (cancelling the ubiquitous Ri  in this limit) 

 

θ

θ θ λ
π

λ

   

 


3

2

3

2

( ) Im * ( ) ( ) ( ) 2 ( )
2

( ) 2 ( )

j j

d q
F p V p p u p q q p F p

T p p F p

… (2.3) 

In the above the first term is the transfer due to the interacting 

triad,      –  . Once again the total energy ( )E k contained between the 

scales p=0 and p=k is obtained as 
2

0

4 ( )

k

p F p dpπ  and the time 

derivative of ( )E k  is the rate at which energy is leaving the region p<k 

for the region p>k and hence is the rate of energy transfer from wave-

numbers below k to those above it. Hence the transfer rate, dominated by 

the second term in Eq.(2.2), is found as ( the constant velocity scale 2
0u is 

absorbed in Ri ) 

θ θε π λ π  
2 4

0 0

( ) [ 4 ( ) 4 ( ) ]

k k

k Ri T p p dp p F p dp             … (2.4) 

We first take the dissipative term in the above equation and 

express it in terms of the energy spectrum E(p) and p. The dimension of 

F(p) is found from the dimension of θ(p). As explained before the 

dimension that we are talking about is the scaling dimension (how do 
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equations remain invariant under a scale transformation) and hence the 

scaling dimension of θ(r) is L/T2 . Consequently, F(p) has a scaling 

dimension of L5/T4. As a result in the second term on the right hand side 

of Eq. (2.4), the quantity p4F(p) has the dimension L/T4. Expressed in 

terms of p and E(p) it behaves as E2(p)p5. The second term on the right 

hand side of Eq. (2.4) now becomes (dropping numerical factors)

2 5

0

( )

k

E p p dp . Our task now is to cast the first term in a similar form i.e. 

we want to write it as 
2 5

0

2 ( )

k

eff E p p dpλ  . Once again as in the kinetic 

energy case, the λeff operates at all scales that are greater than k and is 

better written as ( )eff

k

p dpλ



 .  As in the Kolmogorov case[28] expressing 

λeff(p) ( this is done simply by a dimensional analysis ) in terms of E(p) 

and p, we get  (the sign has been made positive with the understanding 

that the flow is from low to high values of k) 

θε λ

 
  

  
 

2 5

0

( )
( ) ( )

k

k

E p dp
k Ri E p p dp

p p
                   … (2.5) 

With ( )k  set equal to a constant ε we obtain the crossover from 

the inertial range scaling to a pre-dissipative scaling for Bolgiano-

Obukhov turbulence.  

 Taking a derivative of Eq. (2.5) with respect to k when ( )k  is a 

constant, gives 
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2 5 2 5

3/2 3

0

( ) ( )
( ) ( )

k

k

E p E k
dp E k k E p p dp

p k
λ

 
  

  
        … (2.6) 

Defining
2 5

0

( ) ( )

k

y k E p p dp  , we can write Eq. (2.6) as  

3/2 2 3 3/2

( ) 1
( )

( ( ))
k

E p
dp y k

p k k E k
λ



                             … (2.7) 

Further, defining 
3/2( )E p p  as 

1/4g , the above equation 

becomes 

1/4

3 2 3/4

( ) ( )
0

( )
k

g p y k
dp

p k g k
λ



                                      … (2.8) 

The definition of ( )y k  shows 
5 2 ( )

( )
dy g k

k E k
dk k

   and using 

this in Eq. (2.8) to change the variable p to y, we arrive at                    

2 3/4 2 3/4

( )

1 ( )
0

y k

dy y k

k g k g
λ



                                            … (2.9) 

Differentiating the above equation with respect to y yields (note that 

2 2( ) 2

( )

d k k

dy g k


3/4 7/4 3/4

1 2
0

y d y

dyg g g

 
    

 
                      … (2.10) 

leading to the differential equation 
8 8

3 3

dg g

dy y
    with the solution 

8/38
( )

5

y
g y Ay  where A  is a constant. The relation 

dy g

dk k
  

allows us to write   
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  ln const.
( )

dy
k

g y
                                                     … (2.11) 

Integrating we find 

β

α




8/5

8/3 3/5(1 )

k
y

k
                                                           … (2.12) 

where α and   are constants. We use the definition of y(k) to 

write 

 
β

α

 



3/5
2 5

8/5
8/3

8
( )

5 1

dy k
E k k

dk k

                              … (2.13)  

In the low k inertial range, the k term in the denominator is 

unimportant and we get  

11/5( )E k k                                                                       (2.14) 

-the desired Bolgiano spectrum. For high values of k the crossover 

is to a 
13/3( )E k k form, which is less steep than the Kolmogorov to 

viscous crossover. 

We now need to discuss the Richardson number dependence of 

the coefficients   and   in Eq.( 2.13 ) above. For this, we need to go 

back to Eq.(1.7) and note that 2/5( )E k   and using Eq. (2.4), we get 

2/5( )E k Ri . Using Eq.(2.13) in the inertial range we get 4/5Ri  . In 

the high k range, dissipation plays a more important role and hence the 

spectrum there will be determined by the dissipation coefficient   and 

not Ri . In the high wave-number range the spectrum will be independent 

of Ri  if Ri  . This implies that the spectrum will be proportional to 
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13/3k  for wave-numbers 3/16k Ri . This is our first result, and it states 

that to see the Bolgiano- Obukhov spectrum, we need to focus on wave-

numbers which satisfy 3/16 1kRi  . We define a crossover wave-number

3/16
Ck Ri  . For  Ck k  , one has the Bolgiano –Obukhov spectrum and 

for Ck k  , one enters the dissipation range with a 13/3k  spectrum. Since 

the coefficient   in Eq.(2.13) is proportional to Ri , we can write 

Eq.(2.13) as 

11/5

4/5
8/3

( / )
( )

1

C

C

k k
E k E

k

k




  
   
   

                                                  … (2.15) 

The above formula clearly shows the transition from the Bolgano-

Obukhov spectrum to a dissipation influenced spectrum as the wave-

number increases past the crossover wave-number Ck . In the next 

section, we present the Kolmogorov to Bolgiano-Obukhov spectrum 

which will yield another constraint on the range where one can see the 

stratified fluid spectrum. It should be clear that our calculation does not 

fix the coefficient of the Ri  involving terms. So the exact range where 

the desired spectrum will be seen is not being set down but a clear idea 

of where to look for it and the high probability of being in a crossover 

range forever are the two points that we want to bring out.      

 

3.  The Kolmogorov to Bolgiano-Obukhov crossover 

In this section we use the technique developed above to obtain the 

crossover from the Kolmogorov to the Bolgiano-Obukhov spectrum. A 

preliminary version of this can be found in Ref [27]. We begin by noting 
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that the time derivative of the E(k) obtained from the full energy 

expression in the first line of Eq. (1.5) gives an energy flux which is 

simply the sum of the kinetic energy flux and the “potential energy” flux 

of the previous section with the latter weighted by the appropriate factor 

of Tgdα . In this section we will focus on the inertial range crossover 

only and hence drop the dissipative terms. The total energy flux ( )T k  

across the wave-number k is given by the appropriate combination of 

( )C p  and ( )F p where ( ) ( ) ( )C p u p u p   is the velocity 

correlation function. In analogy with the previous section the rate of total 

energy transfer from wave-numbers below „k‟ to wave-numbers above 

„k‟ is 

ε π    
2

0

( ) 4 ( ) ( )

k

T k p C p RiF p                                  … (3.1) 

Since we are in the inertial range the dissipative terms will be 

dropped and we have the energy transfer rate given by 

ε

  
  

  
  

2 5 2

0 0

( )
( ) ( ) ( )

k k

T

k

dp E p
k p E p dp Ri p E p dp

p p
         … (3.2) 

The first term on the right hand side of the above equation is 

exactly the term used by Heisenberg [31]. We need to point out that 

being in the inertial range puts a limit on the wave number. The smallest 

allowed wave number is determined by the inverse of the  system size. 

The largest requires that ( ) /E k k be significantly larger than   or  , 

whichever is larger. This requires 1/3 4/3 ,k     as well as 

1/5 8/5 ,Ri k    . It should be pointed out that we have absorbed a 
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constant dimensional factor of square of a typical velocity scale in the 

problem in the Richardson number written above. We define  

2 5

0 0

( ) ( ) ( )

k k

y k p E p dp Ri p E p dp                               … (3.3) 

3 6 2( ) ( ) ( )g k k E k Rik E k                                          …  (3.4) 

( )dy g k

dk k
                                                                        … (3.5) 

Invoking the Kolmogorov picture of the inertial range where

( )T k   is a constant and taking a derivative of Eq. (3.2) with respect to k, 

we obtain (it should be noted that since the arguments leading to Eq. 

(3.2) from Eq.(3.1) are based on dimensional analysis, there can be 

unknown functions of the dimensionless variable Ri  associated with the 

second term in Eq. (3.4) which can only be fixed by some additional 

constraint ) 

3

( ) ( )
( )

k

E k dy E p dp
y k

dk p pk



                                         … (3.6) 

Using Eq.(3.3) to express dy/dk, we get 

 

3 2 5 2

2 1/2 3
3

( ) ( ) ( )

( ) ( )

( ) 1 1

1 ( )( )

k

E p dp E k y k

p p k k E k Rik E k

y k

k Rik E kk E k










            … (3.7) 

Solving the quadratic equation for k3E(k) in Eq. (3.4), one has 
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 
3

1/2

2 ( )
( )

1 4 ( ) 1

g k
E k k

Rig k


 
                                      … (3.8) 

Substituting this result in Eq. (3.7) allows us to write the left hand 

side of the equation as 

                                                                                              

 

 

 

          … (3.9) 

We have used Eq. (3.5) to obtain the final form above.  

Using Eq.(3.8) in the right hand side of Eq.(3.7) and noting that  

1/2

3 23

1 1 ( ) 2

1 ( ) ( ) 1 1 4 ( )( )

y k

Rik E k k g k Rig kk E k

 
  

   
 … (3.10) 

We finally write Eq.(3.7) in the form  

 
1/2 1/2

2 2
( )

( )
1 4 ( ) 1 1 4 ( ) 1

( ) ( )y k

dy y k
Rig p Rig k

g p p k g k



             … (3.14) 

Differentiating both sides of Eq (3.11) with respect to y, we have 

 
 

 
  

   
  
 
 
 

1/2

1/2

2

1/2

1 4 1 2 ( )
1 4 1

( )

1 4 1

gRi y k
Rig

g k g

y Rigd

dy g

                     … (3.12) 

 

 

1/2

3 3

2
( )

1 4 ( ) 1( )

2

2

( ) 1 1 4 ( )

k k

y k

Rig pE p dp
dp

Rip p

dy

p g p Rig p

 



  
   

  

 
  

   
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Defining, 

 
1/2

1 4 ( ) 1
( )

( )

Rig k
f y

g k

 
                                        … (3.13) 

leads to  

2 ( )
( )

( )

y k f d
f yf

g k dy
                                                    … (3.14) 

Consequently, 

2(ln ) 2
dy

d fy
g

                                                               … (3.15) 

with the integral  
y

f C
k
  ( constant) leading to  

1/4

1 4 ( ) 1

( )

Rig k y
C

kg k

  
                                           … (3.16) 

From Eq (3.5), we now have the g(k) given by (setting 

1/42C Ri ) 

   
 

1/4
1/4

0

( )
( ) 1 4 ( ) 1

k
g p

dp kg k Rig k
p

                … (3.17) 

A derivative takes us to the exact differential equation satisfied by 

g(k). We find 

      
    

 
 

 

3/4
7/4

2

1 1 4 ( ) 1 1 4 ( )4 ( ) 4 ( )

1 6 ( ) 1 6 ( )
1 1

1 4 ( ) 1 4 ( )

Rig k Rig kdg g k g k

Rig k Rig kdk kk

Rig k Rig k

                                    

                                                                                                      … (3.18)                                                                                                                                                                 
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To obtain the asymptotic answers, we need to study the limits 

Ri0 (Kolmogorov) and Ri∞ (Bolgiano-Obukhov). In the first case 

we obtain  

7/4

2

4 4dg g g

dk k k
                                                            …  (3.19) 

Simply by inspection we can write down the solution as 

4/3( )g k k . From Eq.(3.4) we now get 
5/3( )E k k  which is the 

Kolmogorov spectrum. For Rig(k)>>1 on the other hand  

 
  

 

13/8

2 1/8

8 2 2 ( )

3

dg g g k

dk k k Ri
                                          … (3.20) 

In this limit inspection yields
8/5( )g k k  and this in conjunction 

with Eq.(3.4) in the ( ) 1Rig k  limit gives 
11/5( )E k k  which is the 

Bolgiano-Obukhov spectrum. It is thus clear that the exact solution for 

g(k) obtained by numerically integrating Eq.(3.18) starting at some small 

value of k with an initially prescribed g(k) will evolve differently for 

different values of the Richardson number and in the extreme cases 

Ri0 and Ri g(k)>>1 yield the two limiting spectra. The departure from 

the Kolmogorov region occurs if ( ) 1Rig k   with 4/3( )g k k  leading to 

the constraint 
4/3 1Rik   which implies that it occurs at wave-numbers 

3/4k Ri . We define a wave-number Bk  by the relation 3/4
Bk Ri  and 

another wave number Ck  by the relation 3/16
Ck Ri . The combined 

conclusion of Secs 2 and 3 is that a clear Bolgiano-Obukhov spectrum 

can only be seen in the span B Ck k k  .  
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4. Discussion of the crossovers 

In this section, we use the essential features of the crossover 

issues in Sections 2 and 3 to write down a handy crossover formula 

which can be used to analyze experimental and numerical data. To this 

end, we rewrite Eq.(2.23) as 

 
11/5

0
4/5

8/3
( )

1
C

E k
E k

k

k




  
   
   

                                              … (4.1) 

where the constant 0E  is dependent on the Richardson number. 

This provides the crossover from the Bolgiano-Obukhov spectrum to an 

early dissipative range spectrum. To simplify the Kolmogorov to 

Bolgiano-Obukhov crossover, we return to Eq (3.18) and simplify it by 

modifying a couple of inessential details. We carry out approximations in 

the functional forms involving the square roots to cast everything as a 

function of the square root 1 ( )Rig k  alone which leaves the two 

limiting forms ( 1, 1Ri Ri   ) unchanged. What this amounts to is that 

we take Eq.(3.18) and replace the number „6‟ appearing in two places by 

the number „4‟.This leads us to a much simplified crossover differential 

equation 

 
 



7/4 7/4

2 1/8

4 2

1 ( )

dg g g

dk k k Rig k
                                    … (4.2) 

It is slightly more convenient to work in terms of 

3/4( ) ( )h k g k  and 
1l k ,which casts Eq.(4.2) in the form 
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α
 

 4/3 1/8

3

(1 / )

dh h

dl l Ri h
                                           … (4.3)      

where 7/42  . The above form is easily amenable to perturbation 

theory for small Richardson numbers and to the lowest non-trivial order  

α α

α

 
   

 

4/3
2

1/3

3 4
( ) ( )

4 64

l Ri
h l O Ri

l
                             … (4.4) 

It is easy to check that for high Richardson numbers the 

asymptotic form of h(l) is  

β 6/5( )h l l                                                                        … (4.5) 

where   is a function of the Richardson number which vanishes 

for Ri  . An approximate formula which follows the above 

constraints is  

 

3/20

4/3

1
( )

4
1

l
h l

Ri

l


 
 

  
 
 

                                                 … (4.6) 

Remembering l=1/k , g(k)=h(k)–4/3 and 3/4
Bk Ri  we get 

                     

1/54/3 4/3

4/3
( ) 1

B B

k k
g k

k k

  
   
   

                             … (4.7) 

Now turning to Eq. (3.8) and using the same approximations as 

explained below Eq. (4.1) , we arrive at the simplest possible crossover 

as 

 

3

0

0

( )
( )

1 ( )B

k g k
E k K

k B Rig k


 

  
 

                                        … (4.8) 
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In the above equation 0K and 0B  are numerical constants of order 

unity which should be material independent and hence the above 

crossover has a universal character. For 1Ri   Eq. (4.8) yields 

3( ) ( )E k g k k  and further 
4/3( )g k k  since in this limit / 1Bk k 

.The Kolmogorov energy spectrum is obtained for very small Richardson 

numbers. For Rik4/3>>1, i.e. Bk k  we crossover to the Bolgiano 

spectrum. If we want a single formula to represent the crossover to the 

spectrum for Ck k , we can combine Eqs (4.8) and (2.25) to write 

3

0 4/5
8/3

( ) 1
( )

1 ( )

1
B

B

k g k
E k K

k Rig k
k

k



 

  
     

   
   

                 … (4.9) 

The number  in the above formula is the ratio
8/3( / )B Ck k   

and is expected to be orders of magnitude smaller than unity. The 

constant 0B has been set equal to unity which is consistent with the order 

of accuracy in the approximations in this section. The compensated 

functions shown in Fig 1 are obtained from Eq.(4.1) with the overall 

scale-factor set to unity.                                     

The crossovers are now clearly seen. At any given Richardson 

number Ri, for small wave-numbers satisfying Rik4/3<<1( Bk k ), one 

gets
5/3( )E k k . As the wave-number increases, it begins to crossover 

to 
11/5( )E k k  and for Bk k , it is predominantly of the Bolgiano-

Obukhov variety. If the wave-number is increased further to Ck k , the 

crossover to a faster decay is obtained as shown in Eq. (2.25) with
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13/3( )E k k  before one enters a completely dissipation dominated 

regime. A function covering the entire range can be written down as 

 

1/5
8/15 4/3 4/5

11/5

1/2 8/3
4/3 4/3

1 1
( )

11 1

x x
E k k

xRix x 

      
   

 

    …(4.10) 

For very small Richardson numbers, there is hardly any flat 

region in the compensated spectrum. It is for Richardson number of 

order unity that about a decade of flat compensated spectrum is obtained. 

For higher Richardson number , the anisotropy is expected to play a 

major role. For 1Ri  , our formula   yields answers  very similar to 

those seen in Fig (   ) of Ref.(6) and Fig (4b) of Ref.(7).  Here it is clearly 

seen that the spectrum crosses over from Kolmogorov to Bolgiano-

Obukhov as the wave-number increases and then departs again both in 

the calculation here and the simulations.  

For completeness, we provide the crossover results in co-ordinate 

space as well. In co-ordinate space one studies the correlation function 

2
2( ) [ ( ) ( )]S r   u x r u x . The relation between 2 ( )S r and ( )E k is 

obtained as  

2

0

sin
( ) 4 ( ) 1

kr
S r E k dk

kr


 

  
 

                                    … (3.26) 

The energy spectrum E(k) is obtained from Eqs. (3.25) and (3.8) 

and S2(r) from Eq.(3.26). The crossover features are as follows. For large 

values of r corresponding to r>>Ri3/4, the spectrum is Kolmogorov i.e 

2/3
2( )S r r , for r<<Ri3/4 (more precisely Ri5/8), the spectrum is 
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Bolgiano-Obukhov i.e. 
6/5

2( )S r r  and for still smaller r (but still not 

in the dissipative range) it is 
10/3

2( )S r r as established by Eq (2.23). 

This implies that if one observes a Bolgiano-Obukhov spectrum at a 

certain spatial scale at a low Richardson number, it is possible that one 

will observe a Kolmogorov spectrum at that same spatial scale at a high 

Richardson number. 

5.  Conclusion 

We have reviewed the turbulence energy spectrum in stratified 

fluids and looked at the issue of crossover from Kolmogorov to 

Bolgiano-Obukhov scaling and beyond in the energy spectrum of a 

stably stratified fluid (when the results are always true) and in a 

convecting fluid (when our results hold only if the Bolgiano Obukhov  

spectrum is numerically or experimentally observed). The key 

observation is that what determines the crossover from one regime to 

another is the product knRi where n is a number of order unity. For values 

of knRi greater than order unity, it is the Bolgiano-Obukhov spectrum 

which is relevant and for lower than unity values the observed spectra 

should be Kolmogorov like. The value of n is 4/3 in the extreme 

Kolmogorov limit and increases to 8/5 for larger Richardson numbers. At 

values of k significantly higher than that required for onset of the 

Bolgiano spectrum, the energy spectrum crosses over to a k–13/3 form. In 

co-ordinate space the second order structure factor which is the Fourier 

transform of the energy spectrum scales as r2/3 at large distance scales 

(Kolmogorov) and crosses over to a Bolgiano-Obukhov spectrum (r6/5) at 

shorter scales and a r10/3 form at even shorter scales bordering on the 
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dissipative regime. This is seen in Fig (6) of Ref [15] but not mentioned 

in the article. 
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1. Introduction 

A large number of investigations are in light regarding blood flow 

through arteries containing various kinds of stenosis. It may be mentioned 

that the magnetic field reduces the rate of flow of blood in human arterial 

system, which is useful in the treatment of certain cardiovascular disorders 

(Korchevskii and Marchounik
1
) as well as in problems concerning with the 

increasing of the rate of circulation of blood e.g. hemorrhage and 

hypertension etc. Extensive research works are going on for dynamics of 

biological fluid in presence of magnetic field for which number of   

magnetic devices has also been developed for cell separation, drug 

carriers, cancer tumor treatment etc. Heat transfer in blood is also important 

to find applications in muscle, skin tissues as well as in thermal therapy etc. 

The idea of electromagnetic fields in medical research was due to 

Kolin
2
. Korchevskii et al

1
 discussed the possibility of regulating the 

movement of blood in human system by applying magnetic 

field.  Halder
3
 analyzed the effect of magnetic field on blood flow through 

an indented tube in presence of erythrocytes. A mathematical model for 

blood flow in magnetic field has been proposed by Tzirtzilakis
4
. Singh and 

Rathee
5
 studied two-dimensional MHD blood flow with 

variable viscosity through stenotic artery in porous medium. A numerical 

study of the effect of magnetic field on blood flow in artery having multiple 

stenoses has been done by Varshney et al..
6
 

Now the effect of  heat transfer in blood vessels is also important 

from practical points of view. Barcroft and Edholm
7
 studied the effect of 

temperature on blood flow and deep temperature in the human forearm and 

also examined the variation of  blood motion due to changes in temperature 

of the surrounding atmosphere. The local temperature effect on blood 
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flow in human foot was discussed by All wood and Burry.
8
 Charm et 

al.
9
 investigated   experimentally the effect of  heat transfer in small tubes of 

diameter 0.6 mm in a water bath, while Victor and Shah
10

 computed heat 

transfer for uniform heat flux and uniform wall temperature for fully 

developed flow  in the entrance region. The estimation of  heat 

transfer under different configurations and diameters of blood vessels 

correlation equations were developed by Chato.
11

 Lagendijk
12

  analyzed 

temperature distributions in the entrance region around the vessels during 

hyperthemia. Barozzi and Dumas
13

  calculated heat transfer in the entrance 

region to investigate the rheological properties of the blood stream and cell 

free peripheral plasma layer at the vessel wall. 

Ogulu and Abbey
14

  analyzed the simulation of heat transfer on  

oscillatory blood flow in an indented porous artery while the dynamic 

response of heat and mass transfer in blood flow through 

bifurcated arteries under stenotic conditions has been considered by 

Chakravarty and Sen.
15

 Obdulia and Taehong Kim
16

 investigated the 

variations of temperature distributions in an atherosclerotic plaque 

experiencing an inflammatory process. A dynamical model for heat 

transfer to blood flow in a small tube was also proposed by Wang.
17

 

The present contribution is to find the combined effect of heat 

transfer and an inclined uniform transverse magnetic field on blood 

flow through an inclined parallel plate channel with radiation and heat 

source. The effect of non-dimensional governing parameters on axial flow 

transport, temperature, concentration profiles and normal velocity have been 

estimated and presented through graphs. 
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2. Mathematical Formulation of Problem 

From mathematical point of view, the following assumptions are 

made for the problem:  

Blood is Newtonian, incompressible, homogeneous and conducting 

viscous fluid with constant viscosity. The effect of thermal radiation, 

chemical reaction, heat source and magnetic field on blood flow is taken 

into account. Blood flow through the artery under inclined uniform 

transverse magnetic field and heat transfer is assumed to be of two-

dimensional layer.  

The flow equations are given as follows: 
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The thermal radiation heat flux   
  by using Rosseland’s approximation is 

expressed as 

  
   

   

   

   

   
  

   

   
    

where    is the Stefan-Boltzmann constant and    is the Rosseland mean 

absorption coefficient. Assuming that the temperature differences within the 
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flow are sufficiently small so that    may be expressed as a linear function 

of temperature in the form 

      
      

  

This implies that 

  
   

      
 

   

  

  
                                                                                                  

The higher order terms in the expansion (Tailors series expansion) in   
  is 

neglected 

In the above equations,    and   are the vertical and horizontal 

component velocities in the    and    direction  respectively, α is the angle 

of inclination of the magnet field,    is the time,    is the temperature,     is 

the temperature distribution and g is the acceleration due to gravity,    is 

the constant magnetic field,     is the specific heat capacity, M is the 

magnetic parameter. Pr is the Prandtl number,   is the density of the blood, 

   is the coefficient of volume expansion due to temperature and    is the 

coefficient of volume expansion due to concentration,   is the electrical 

conductivity,    is the chemical reaction parameter, 𝑅 is the radiation 

parameter,    is the Schmidt number, S is the heat source and m is the rate 

of mass flow, λ is the decay parameter,    is the chemical concentration, D 

is the diffusion coefficient. 

We introduce the following non-dimensional quantities for 

convenience:  
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The continuity, momentum, energy and diffusion equation in 

dimensionless from are then read as follows: 
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3. Solution of the Problem 

The boundary conditions for the problem in non-dimensional form 

are: 
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Substituting (12) - (15) into equations (7) - (10) we got 
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And the boundary conditions are 

                                                                              … (19) 

       
  

  
                                                                                   

Solving (18) we get 

       
       

    

i.e. C(y,t)      
       

           … (21) 

Using boundary conditions we get 
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Solving (17) we get 
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Using boundary conditions we get 
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Solving (16) we get 

     
       

         

    

  
       

      

    

  
       

      

    

  
       

      

    

  
       

 
  

 
 

Using boundary conditions we get 

   

    
          

          
          

          
   

    
      

      
      

      
      

             
 

   

    
      

      
      

      
          

      

    
          

          
          

   

             
 

where 

   
     

             
        

   

 
     

             
        

    



      ON MHD BLOOD FLOW THROUGH PERMEABLE ETC.         121 

 

 
   

       (  
       )

    
   

       (  
       )

    
  

 
 . 

 i.e.      

       

(   
       

         
    

  
       

 

     
    

  
       

 –      
    

  
       

      
    

  
       

 

  

 
)                                                                                                                            

4. Results & discussions 

 The numerical results of axial velocity, normal velocity and 

temperature obtained from the above analysis are shown graphically for 

different values of magnetic field parameter (M), Prandtl number (Pr) and 

heat source parameter (S) against y for better understanding of the problem. 

    

Fig. 1. Temperature distribution for different values of Heat source parameter (S) 

Figure 1 illustrates the behavior of temperature field at t = 1, λ = 0.2, 

b = 0.2, Pr = 0.5 and for different values for heat source parameter (S = 1, 
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1.5, 2, 2.5). It is observed that the temperature decreases with increasing the 

values of the heat source upto y ≤ 2.4 but increases from y ≥ 2.4 for 

different values of S.  

 

Fig. 2. Temperature distribution for different values of Prandtl number (Pr). 

Figure 2 describes the effect of different values of Prandtl number 

(Pr = 0.5, 1.5, 2.5, 3.5) at t = 1, λ = 0.2, b = 0.2, S = 1.5. The effect of 

Prandtl number on temperature is same as heat source parameter. It is 

decreasing with increasing the values of Parndtl number upto y ≤ 2.5 but 

reverse effect is observed for y ≥ 2.5 (for different values Pr). 

 

Fig. 3. Axial velocity for different values of Magnetic field parameter M. 
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From figure 3, we note  that axial velocity of blood is increasing for 

increasing values of magnetic field parameter (M), when heat source 

parameter(S) is kept constant at(S=5). For M=1.6, the axial velocity is 

increasing very fast against y while for M=1 the velocity  increases slowly.  

 

Fig. 4. Axial velocity for different values of heat source parameter (S) 

Figure 4 indicates the effect of heat source parameter (S) on axial 

velocity of blood against y. It is clear that the velocity increases with 

increasing values of heat source parameter(S) for y ≤ 2.0 and represents 

reverse effect for y    .  

 

Fig. 5. Axial velocity for different values of Prandtl number. 



124                   ANUP KUMAR KARAK AND RUMA BAGCHI 

Axial velocity for different values of Prandtl number (Pr) is shown 

in Fig. 5. From Fig. 5, we conclude that the velocity is increasing for 

increasing values of Pr for y ≤ 2.2 and decreasing for the same values of Pr 

for y ≥ 2.2. 

 

Fig. 6. Normal velocity for different values of decay parameter (λ) 

It is also clear from the fig.6 that the normal velocity is decreasing 

with increasing values of λ and also for increasing values of t. The velocity 

is decreasing slowly for λ= 1 while it is tending to zero very fast for λ= 2.5. 

It is due to the velocity is exponential function 

 

5. Conclusions: 

 The impacts of thermal radiation, chemical reaction, and heat source 

on unsteady MHD blood flow  through an artery with an angled magnetic 

field are investigated including other factors.   
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An increase in the magnetic field causes both blood flow and 

volumetric blood flow rate through the artery to decrease. This process can 

treat low blood pressure by raising blood pressure to return to normal. 

Sickle cell patients can also be treated by improving blood flow and 

maintaining oxygen in the hemoglobin as a result of increased blood flow 

when the magnetic field decreases. This can reduce strokes, swelling and 

pain when affected areas are exposed to the magnetic field at different tilt 

angles. 

As the intensity of the magnetic field parameter (M), thermal 

radiation (R), and chemical reaction parameters increases, the blood flow 

rate also decreases. For high blood pressure problems it can be treated well 

with repeated and accurate clinical dosing.   

Increasing the thermal radiation parameter decreases blood flow 

while the volumetric blood flow rate increases. This is due to the blood 

vessels narrowing (lesion), resulting in a reduction in blood flow through 

the vessels. This approach can also be used to treat tumors. Increased 

thermal radiation causes a decrease in blood temperature, which shrinks 

tumor growth in the area of exposure.  

Increasing the heat source increases blood flow, the volumetric flow 

rate of blood, and raises the temperature of blood. This can lead to cramps 

and sometimes death.   

An increase in permeability reduces both blood flow and volumetric 

blood flow, and an increase in the inclination angle of the magnetic field 

reduces blood flow near the arterial wall but decreases blood flow away 

from the wall.   

Decreases in normal speed significantly is to reduce damping 

parameter.   
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A carotid artery containing a tumor is concentrated by drug whose 

concentration increases for large Schmidt number while decreases for large 

reaction parameter. This gives a multiple therapy if approved by medical 

persons. 
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[Abstract: Metallic nanoparticles have involved scientist for over a 

century and are now deeply applied in biomedical sciences and engineering. They 

are an attention of interest because of their enormous potential in nanotechnology. 

Today these materials can be synthesized and improved with various chemical 

functional groups which allow them to be conjugated with antibodies, ligands, and 

drugs of interest and thus introducing a extensive variety of potential applications 

in biotechnology, magnetic separation, targeted drug delivery, and automobiles for 

gene and drug delivery and more significantly diagnostic imaging. Moreover, 

different imaging modalities have been established over the period of time such as 

Magnetic resonance imaging (MRI), computed tomography (CT), Positron 

Emission Tomography (PET), ultrasound, Surface Enhanced Raman Spectroscopy 

(SERS), and optical imaging as an aid to image various disease states. This led to 

the invention of various nanoparticulated contrast agent such as magnetic 

nanoparticles (Fe3O4), gold, and silver nanoparticles for their application in these 

imaging modalities. In addition, to use various imaging techniques in tandem 

newer multifunctional nanoshells and nanocages have been developed. Thus in this 

review article, we aim to provide an introduction to magnetic nanoparticles 
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(Fe3O4), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles 

followed by their synthesis, physiochemical properties, and citing some recent 

applications in the diagnostic imaging and therapy of cancer]. 

Key word: Metallic, Nanoparticles, SERS, plasmon, imaging 

1. General Introduction to Nanoparticles: 

Nanoparticles are the simplest form of structures with sizes in the 

nanometer range. In principle any collection of atoms bonded together with 

a structural radius of < 100 nm can be considered a nanoparticle
1
. 

Nanotechnology is the science that deals with material at the scale of 1 

billionth of a meter (i.e., 10
-9

 m = 1 nm), and is also the study of 

manipulating matter at the atomic and molecular scale. A nanoparticle is far 

smaller than the world of everyday objects that are described by Newton’s 

laws of motion, but bigger than an atom or a simple molecule that are 

governed by quantum mechanics. In general, the size of a nanoparticle 

spans the range between 1 and 100 nm. The properties of many 

conventional materials change when formed from nanoparticles. This is 

typically because nanoparticles have a greater surface area per weight than 

bigger particles which causes them to be more reactive to some other 

molecules. Metallic nanoparticles have different physical and chemical 

properties from bulk metals (e.g., lower melting points, higher specific 

surface areas, specific optical properties, mechanical strengths, and 

magnetizations), properties that might prove attractive in various industrial 

applications. However, how a nanoparticle is viewed and is defined depends 

very much on the specific application. The optical phenomenon is one of the 

essential attractions and a characteristic of a nanoparticle. For example, a 

20-nm gold nanoparticle has a characteristic wine red color
2
. A silver 

nanoparticle is yellowish gray. Platinum and palladium nanoparticles are 
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black. Not amazingly, the optical characteristics of nanoparticles have been 

used from time immemorial in sculptures and paintings even before the 4th 

century AD. The strength of soluble gold was based generally on its 

remarkable medicinal powers of different diseases like, dysentery, heart and 

venereal diseases, epilepsy, and tumors etc. The record of the nanoparticle 

from ancient times to the middle ages has been summarized by Daniel and 

Astruc
3
. 

The first book on colloidal gold was published in 1618 by the 

philosopher and medical doctor Francisci Antonii.
4
 This book includes 

considerable information on the formation of colloidal gold sols with their 

medical uses and successful practical cases. The book noted that soluble 

gold appeared around the 5
th

 or 4
th

 century B.C. in Egypt and China. On the 

other hand, industrial manufacturing of stained glass with colloidal particles 

was established by Kunckel in the seventeenth century (1676)
5
. He also 

published a book whose Chapter 7 was concerned with “drinkable gold that 

contains metallic gold in a neutral, slightly pink solution that exerts curative 

properties for several diseases”.  He concluded that gold must be present in 

aqueous gold solutions to a degree of contamination such that it is not 

visible to the human eye. A dye in glasses, that is, the “Purple of Cassius”, 

was a colloid resulting from the presence of gold particles and tin dioxide 

and was highly popular in the 17
th

 century. A complete article on colloidal 

gold was published in 1718 by Helcher
6
. In the article, this philosopher and 

doctor stated that the use of boiled starch in its drinkable gold preparation 

noticeably enhanced its stability. These ideas were common in the 18
th

 

century, as indicated in a French chemical dictionary in 1769, under the title 

“or potable”. In 1857, Michael Faraday reported the formation of deep red 

solutions of colloidal gold by reduction of an aqueous solution of 

chloroaurate (AuCl4 
-
) by phosphorus in CS2

7
. He also investigated the 
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optical properties of thin films prepared from dried colloidal solutions and 

observed reversible color changes of the films upon mechanical 

compression (from bluish-purple to green).  

The present technology that deals with nanoparticles, or simply 

nanotechnology, began from the particular optical observable fact and the 

establishment of a theory to explain the different physical phenomena that 

were followed subsequent to the development of analytical instruments. 

The latest development of nanoparticles is due to a combination of 

theory and experiments in the fields of physics, chemistry, materials 

science, and biosciences. Specific phenomena (chemical properties and 

physical properties), other than the optical property of a nanoparticle, have 

led to new possibilities in various fields. Applications of nanoparticles in 

various fields involve an economical and easy method of synthesizing high 

quality shaped nanoparticles. For this reason of high quality nanoparticles 

can be achieved by simple operations compared with the more conventional 

nanoparticle synthetic methods. 

2. Surface Plasmon Resonance and Coloring 

The physical properties of surface plasmon resonance (SPR) were reported 

by Wood who might identify semi-monomolecular coverage
8
. Wood also 

discovered the plasmon resonance phenomenon would change with the 

composition of the liquid in contact with the metal surface. He observed a 

pattern of “anomalous” dark and light bands in the refracted light when he 

shone polarized light on a mirror with a diffraction grating on its surface. 

The first theoretical treatment of these anomalies was put forward by 

Rayleigh in 1907. Rayleigh’s “dynamical theory of the grating” was based 

on an expansion of the scattered electromagnetic field in terms of outgoing 

waves only. With this assumption, he found that the scattered field was 
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singular at wavelengths for which one of the spectral orders emerged from 

the grating at the grazing angle. He then observed that these wavelengths, 

which have come to be called the Rayleigh wavelengths, λR, correspond to 

the Wood anomalies. Further corrections were made by Fano but a complete 

explanation of the phenomenon was not possible until 1968
9
 when Otto and 

in the same year Kretschmann and Raether, reported the excitation of the 

surface plasmon band 
10

. In this section they present a basic outline of the 

relation between surface plasmon resonance and the color of 

nanoparticles
11

.  

In solid state physics, the plasmon represents the collective 

oscillation of a free charge in a metal and may be considered as a kind of 

plasma wave 
12

. The positive electrical charge in the metal is fixed and the 

free electron is free to move around it. An applied external electric field, as 

from a light source, causes the free electrons at the surface of the metal to 

vibrate collectively, giving rise to surface plasmons. Since electrons are also 

particles with an electric charge, when they vibrate they also generate an 

electric field, and when the electric field from the vibration of free electrons 

and the applied external electric field (e.g., electromagnetic waves) resonate 

the resulting phenomenon is referred to as a surface plasmon resonance that 

takes place at the surface of the metal. However, if light irradiates a solution 

that contains dispersed metal nanoparticles smaller than the wavelength of 

light, then depending on the electric field of light, the deviation produces a 

free electron at the surface of the metal. As a result, the weak or thick 

portions of the electric field appear on the nanoparticle surface and can be 

considered as a kind of polarization. Such localized plasmon resonance is 

called localized surface plasmon resonance (LSPR)
13

. The LSPR is typically 

concentrated in a very narrow region on the surface of a nanoparticle. The 

wavelength corresponding to the LSPR depends on the kind of metal, the 
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shape of the metal nanoparticle, and the extent of aggregation of the 

metallic nanoparticles. Moreover, the surface plasma vibration also changes 

with the dielectric constant and the quality of the carrier fluid. The plasma 

oscillations in the metal occur mainly in the ultraviolet (UV) region
14

. 

However, in the case of Au, Ag, and Cu, the plasma shifts nearer to 

the visible light domain with the band due to electrons in the s atomic 

orbital. For example, the wavelength of the surface plasmon resonance band 

maximum of a spherical Au nanoparticle is 520–550 nm
15

. 

If a colloidal Au nanoparticle solution is now irradiated with visible 

light at these wavelengths (520–550 nm), the visible light corresponding to 

the green color is absorbed and the particles now display a red purple color, 

which is the complementary color to green. In a colloidal Ag nanoparticle 

solution which has a plasmon resonance band maximum near 400 nm, the 

blue color of the visible light is absorbed and the Ag particles now take on a 

yellow color, the complementary color to blue. 

3. Size Control of Nanoparticles 

The physical and chemical properties of nanomaterials depend not 

only on their composition but also on the particle size and shape. 

Accordingly, a high quality synthesis protocol must first of all provide 

control over particle size and shape. For example, if the diameter of an Au 

nanosphere is made to increase, the surface plasmon resonance will be 

gradually shifted from 530 nm to the longer wavelength side. Thus, if 

nanoparticles differ in size, their optical characteristics will also change 

significantly
16

.  

In optical applications of nanoparticles, simplification of the size 

distribution of the particles becomes a very important factor.  Therefore, it is 

important to fabricate nanoparticles with a single target size in mind.  
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Generally, in order to prepare mono- dispersed nanoparticles, it is essential 

that the nanoparticles grow very slowly after the rapid generation of the 

seed particles. If the size of the nanoparticles decreases (i.e., increase in 

specific surface area), then the increase in the surface energy of such 

nanoparticles will make possible their aggregation. Consequently, after their 

growth to the desired optimal size, it will be necessary to stabilize the 

particulate surface by addition of a dispersing agent. However, where the 

concentration of nanoparticles is unusually high, the decentralized 

stabilization will fall, because the protective action of the organic substrate 

(citrate) is no longer strong enough to prevent aggregation.  

  It is important to realize that the physical properties of a 

nanoparticle can change with the aggregation ratio, even though the 

colloidal solution may contain nanoparticles of identical size. Methods to 

separate out particles of a given target size from a colloidal solution which 

contains nanoparticles of various sizes are known. They are (i) separation by 

precipitation, (ii) centrifugal separation, (iii) gel filtration column, and  

(iv) gel electrophoresis. As a feature of each screening method, the 

precipitation separation is suitable for a large distribution of colloid 

nanoparticles in the solution. The centrifugal separation and the gel 

filtration column are well suited for solutions of colloidal nanoparticles with 

a narrow size distribution. Gel electrophoresis is a suitable method to 

separate nanoparticles taking advantage of the difference in charge density 

of the particles, and is suitable for separating particles with a small cluster 

size. In fact, a combination of these various methods might prove beneficial. 

However, a problem with sorting the various sized nanoparticles using these 

methods is that only a fraction of the nanoparticles of a given size may be 

collected, and then only in small quantities. The digestive ripening method 
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and high temperature melting technique have been proposed to resolve this 

problem.   

 

Various sizes of spherical gold nanoparticles 

4. Shape Control of Nanoparticles 

The shape of nanoparticles is an important factor that determines the 

nature of the surface plasmon resonance band just as the size of the 

nanoparticles did. Absorption spectra in the visible spectral region of 

various Au rod shaped nanoparticles (i.e., nanorods) with changes in the 

aspect ratio (length : diameter). The diameters of the Au nanorods espousing 

a pillar form and used in this experiment ranged from 5 to 20 nm and the 

lengths from 20 to 150 nm
17

. 

It is worth noting that the change in the ratio of a nanorod is related 

to the size ratio of a crystal face. An increase in the size ratio (aspect ratio) 

shifts the maximal absorption band to longer wave lengths. Therefore, the 

physical composition of the nanorods can easily change their spectroscopic 

features, such that various studies have been required to understand these 

characteristics. 

In the case of noble metal nanoparticles such as Ag, Au, Pt, and Pd, 

this shape dependence is particularly evident. For example, Ag and Au 

nanocrystals of different shapes hold unique optical scattering responses. 

Whereas highly symmetric spherical particles reveal a single scattering 
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peak, anisotropic shapes such as rods, triangular prisms, and cubes exhibit 

multiple scattering peaks in the visible wavelengths due to highly localized 

charge polarizations at corners and edges. Controlling nanocrystal shape 

thus provides an elegant approach for optical tuning. Similarly, chemical 

reactivity is highly dependent on surface morphology. The bounding facets 

of the nanocrystal, the number of step edges and twist sites, as well as the 

surface area to volume ratio can dictate unique surface chemistries. For this 

reason, Pt and Pd nanocrystals exhibit shape and size dependent catalytic 

properties that may prove useful in achieving highly selective catalysis. 

Optimizing nanocatalyst morphology has become a successful area of 

investigation. These thrilling possibilities have raised the key question: can 

we logically control nanocrystal shape and surface morphology?    

 

Different shaped nanoparticles [From the left (i) nanoprism (ii) nanocube  

(iii) nanopyramid (iv) nanorod (v) nanoflower (vi) nanogrowth] 
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5. Structure Control of Nanoparticles 

 Nanoparticles that are composed of two or more metals differ in 

their catalytic, magnetic, and optical characteristics from nanoparticles that 

consist of a single metal. Such nanoparticles can be sub-divided into three 

kinds of structures: (i) the alloy structure that exists randomly in a crystal 

(ii) the core–shell structure in which the metal at the center differs from the 

peripheral metal and (iii) the twinned hemisphere structure wherein two 

sorts of hemispheres are joined. The latter heterojunction structure 

facilitates phase separation. Nanostructures consisting of complex metal 

nanoparticles tend to hide the various new features. The core–shell structure 

is comparatively easy to fabricate in complex metal nanoparticles with 

effective functional control. For instance, although the color of an Au 

nanoparticle liquid dispersion is purplish red (the purple of Cassius) and that 

of an Ag nano- particle liquid dispersion appears yellow, whenever Au 

forms the core and Ag the shell the structure then takes an orange color. 

Moreover, if a structured matter has magnetic properties, such as magnetite 

nanoparticles, then the magnetic metal particles could be used to form the 

structure’s core, such that the structure will now be embodied with both 

magnetic and optical characteristics
18

. 

Synthetic methods of preparing core–shell nanoparticles are roughly 

divided into two categories: (i) involving a simultaneous reduction reaction 

and (ii) involving a sequential one electron reduction reaction. As an 

example of the simultaneous reduction reaction, consider the core being 

made up of Pt nanoparticles and the shell composed of Pd nanoparticles. A 

unique method that uses differences in the oxidation potentials of Ag and 

Au has also been reported. Here, a silver nanoparticle is added to HAuCl4 

solution, following which an oxidation–reduction reaction takes place 
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wherein gold is deposited on the surface of an Ag nanoparticle yielding the 

core–shell structure. 

 

Core-Shell nanoparticle 

                      

Alloy structured nanoparticle 

 

Twinned hemisphere structured nanoparticle 
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6. Applications of Metallic Nanoparticles: 

Nanoparticles are used, or being evaluated for use, in many fields. 

The list below introduces several of the uses under development. 

6.1 Nanoparticles in Medicine 

(a) Researchers have confirmed that cerium oxide nanoparticles act as 

an antioxidant to remove oxygen free radicals that are present in a 

patient's bloodstream following a traumatic injury. The 

nanoparticles absorb the oxygen free radicals and then release the 

oxygen in a less dangerous state, freeing up the nanoparticle to 

absorb more free radicals. 

(b) The nanoparticles protect the vaccine, allowing the vaccine time to 

trigger a stronger immune response. 

(c) Nanodiamonds with protein molecules attached can be used to 

increase bone growth around dental or joint implants. 

(d) Chemotherapy drugs attached to nanodiamonds is used to treat 

brain tumors. Chemotherapy drugs attached to nanodiamonds is 

also used to treat leukemia. 

6.2 Nanoparticles in Manufacturing and Materials 

(a) A synthetic skin that may be used in prosthetics has been 

established with both self remedial capability and the ability to 

sense pressure. The material is a composite of nickel nanoparticles 

and a polymer. If the material is held together after a cut it seals 

together in about 30 minutes giving it a self healing ability.  

(b) Silicate nanoparticles can be used to provide a barrier to glass (for 

example oxygen), moisture in a plastic film used for packaging. 

This could slow down the process of spoiling or out in food.   
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(c) Zinc oxide nanoparticles can be dispersed in industrial coatings to 

protect wood, plastic and textiles from exposure of UV rays.  

(d) Silicon dioxide crystalline nanoparticles can be used to fill gaps 

between carbon fibres, thereby strengthening tennis racquets.  

(e) Silver nanoparticles in fabric are used to kill bacteria, making 

clothing odor-resistant.  

6.3 Nanoparticle in Environment 

(a) Researchers are using photo catalytic copper tungsten oxide 

nanoparticles to break down oil into biodegradable compounds. The 

nanoparticles are in a grid that provides high surface area for the 

reaction is activated by sunlight and can work in water, making 

them useful for cleaning up oil spills. 

(b) Researchers are using gold nanoparticles embedded in a porous 

manganese oxide as a room temperature catalyst to breakdown 

volatile organic pollutants in air. 

(c) Iron nanoparticles are being used to clean up carbon tetrachloride 

pollution in ground water. 

(d) Iron oxide nanoparticles are being used to clean arsenic from water 

wells. 

6.4 Nanoparticle in Energy and Electronics 

(a) Researchers have used nanoparticles called nanotetrapods studded 

with nanoparticles of carbon to develop low cost electrodes for fuel 

cells. This electrode may be able to replace the expensive platinum 

needed for fuel cell catalysts. 

(b) Researchers at Georgia Tech, the University of Tokyo and Microsoft 

Research have developed a method to print prototype circuit boards 

http://www.understandingnano.com/photocatalytic-nanogrids-oil-cleanup.html
http://www.understandingnano.com/nanoparicles-iron-water-pollution-cleanup.html
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using standard inkjet printers. Silver nanoparticle ink was used to 

form the conductive lines needed in circuit boards.  

(c) Combining gold nanoparticles with organic molecules creates a 

transistor known as a NOMFET (Nanoparticle Organic Memory 

Field-Effect Transistor). This transistor is unusual in that it can 

function in a way similar to synapses in the nervous system. 

(d) A catalyst using platinum-cobalt nanoparticles is being developed 

for fuel cells that produce twelve times more catalytic activity than 

pure platinum. In order to achieve this performance, researchers 

anneal nanoparticles to form them into a crystalline lattice, reducing 

the spacing between platinum atoms on the surface and increasing 

their reactivity. 

(e) Researchers have demonstrated that sunlight, concentrated on 

nanoparticles, can produce steam with high energy efficiency. The 

"solar steam device" is intended to be used in areas of developing 

countries without electricity for applications such as purifying water 

or disinfecting dental instruments. 

(f) A guide free solders reliable enough for space missions and other 

high stress environments using copper nanoparticles. 

(g) Silicon nanoparticles coating anodes of lithium-ion batteries can 

increase battery power and reduce recharge time.  

(h) Semiconductor nanoparticles are being applied in a low temperature 

printing process that enables the manufacture of low cost solar cells. 

(i) A layer of closely spaced palladium nanoparticles is being used in a 

hydrogen sensor. When hydrogen is absorbed, the palladium 

nanoparticles swell, causing shorts between nanoparticles. These 

shorts lower the resistance of the palladium layer. 

http://www.understandingnano.com/nanoelectronics-gold-nanoparticles-organic-transistor.html
http://www.understandingnano.com/nanoelectronics-gold-nanoparticles-organic-transistor.html
http://www.understandingnano.com/nanoparticle-solar-steam-generator.html
http://www.understandingnano.com/copper-nanoparticle-solder.html
http://www.nanosolar.com/technology
http://www.understandingnano.com/nanoparticle-palladium-hydrogen-sensor.html
http://www.understandingnano.com/nanoparticle-palladium-hydrogen-sensor.html
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(j) photoswitchable short-chain dyads [19-22] and their nanocomposites  

(when nanoparticles combine with  a short-chain dyad) possess great 

applications in molecular electronics, designing of molecular 

components  of photovoltaic cells and artificial light energy 

converters, energy storage devices etc. 

6.5 Nanoparticles in Paints 

One of the most interesting aspects of metal nanoparticles is that 

their optical properties depend strongly upon the particle size and shape. 

Bulk Au looks yellowish in reflected light, but thin Au films look blue in 

transmission. This characteristic blue color steadily changes to orange, 

through several tones of purple and red, as the particle size is reduced down 

to ∼3 nm. The nanoparticles attracted attention as color materials and the 

possibility of their use has been examined in various fields. Spraying with 

the clear colored coating containing the nanoparticles increased the depth of 

the red background even more, and since the car is in the shade there is 

almost no diffuse reflection. The red color becomes a feature of paints 

containing nanoparticles. Paints that contain nanoparticles cannot be 

removed as easily as can classical paint. However, because of high costs, 

paints with nanoparticles are used only in limited applications. Metal 

nanoparticles have also been used in enamel color paints in pottery. 

Conventional enamel color has used paints with mixed transition metals in 

the pulverization (glass frit) of glass. If, instead of transition metal paints, 

Au nanoparticles were used, then high quality red paint could be made with 

high transparency. Research into iron oxide nanoparticles in paints has also 

been carried out.   
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6.6 Nanoparticles in Micro-wiring 

Metal nanoparticle paste is used for circuit pattern formation of a 

printed wired board in the electronic industry. The melting point of metal 

nanoparticles decreases relative to bulk metals, so that circuit formation 

impossible on polymer base material is attainable using a conventional 

electric conduction paste. Further-more, whenever particles at the nanoscale 

are used, the wiring width is thin to a nano level. Formation of nanoparticle 

wiring can use an ink-jet method, a method that is both inexpensive and 

requires shorter times than vacuum evaporation and photolithographic 

methods that are typically used. Generally, Au is used to make the metal 

nanoparticle paste. However, it is expensive, so that substitution of Cu 

nanoparticles has been proposed. Cu nanoparticles tend to be oxidized so 

that the process requires the presence of anti-oxidants.   

6.7 Nanoparticles in Medical Treatments 

 Just as the surface plasmon resonance is seen in a metal 

nanoparticle, an increase in the quantity of nanoparticles raises the 

scattering intensity. Taking advantage of this feature, the application to 

specific molecule recognition in a living body tissue is expected. For 

example, by covering the cancer cell surface it becomes possible to 

distinguish a healthy cell from a cancer cell by the presence of antibodies 

joined to the Au nanoparticle. Although the Au nanoparticle junction with 

the antibody is nicely distributed in the healthy cell, when a cancer cell 

exists the antibodies are concentrated mostly at the Au nanoparticle. The 

imaging at various wavelengths is performed by a change in the shape of the 

nanoparticle.  Moreover, if a protein and a functional molecule were joined 

to the Au nanoparticle, it could also be used for imaging cells other than 
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cancer cells. In this way the nanoparticles are widely used in the field of 

medical treatment.  

7. Conclusion 

In this review article the author has been involving himself to 

explain the details information regarding the formation of metal 

nanoparticles. Through this one can make an idea about metal nanoparticles. 

The physical properties of surface plasmon resonance (SPR) has been 

reported here. Various size of nanoparticles and its properties has been 

explained elaborately. The shape of nanoparticles is an important factor that 

determines the nature of the surface plasmon resonance has been described 

in this review article. The structural properties of the nanoparticles and their 

utility in the world of nano science has been explored. The details 

applications of nanoparticles in various fields are the key features of this 

review article. 
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ON MHD BLOOD FLOW THROUGH PERMEABLE ETC. 

 

 

One Day Seminar by CITP in Collaboration with Physics 

Department of RKM Residential College  

Narendrapur, Kolkata 

 

One day Seminar  on “ Recent Trends of Physics and Mathematics” 

to celebrate  70
th

 Anniversary of Calcutta Institute of Theoretical Physics 

was held jointly by CITP and Physics Department of Ramkrishna Mission 

Residential College, Narendrapur on 8
th

 December , 2022. The following 

Memorial lectures were presented in the seminar. 

# 1.Prof. S. Ghosh Memorial Lecture on “ Sum of Two Squares” 

Speaker: Prof. Shashi Mohan Srivastava, Visiting Professor of 

Mathematics, IACS, Jadavpur, Kolkata 

# 2.Prof. S. D. Chatterjee Memorial Lecture on “ Quantum Statistics”  

Speaker: Prof. Jayanta Kumar Bhattacharjee, Emeritus Professor of 

Physics, IACS, Jadavpur, Kolkata 

Both the lectures were highly interactive. About 80 UG students and 

teachers from  different Colleges of Kolkata participated in the Seminar and 

asked relevant  and interesting questions to understand the subjects. The  

Speakers  encouraged the advanced learners to study the subjects  in  details   

so that they can  acquire in depth knowledge. The seminar ended with vote 

of thanks by Dr. Malay Purkait, Associate Professor and Head of the 

Department of Physics, RKM Residential College, Narendrapur, Kolkata. 

INDIAN JOURNAL OF THEORETICAL PHYSICS, VOL 70, NOS. 3 & 4, 2022 
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