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Inflation-a Comparative Study Amongst Different Modified 

Gravity Theories. 

Dalia Saha1 and Abhik Kumar Sanyal2 

1,2
Dept. of Physics, Jangipur College, Murshidabad,  

West Bengal, India - 742213 

 

 [Abstract: In the recent years, a host of modified gravity models have 

been proposed as alternatives to the dark energy. A quantum theory of gravity also 

requires to modify `General Theory of Relativity'. In the present article, we 

consider five different modified theories of gravity, and compare inflationary 

parameters with recent data sets released by two Planck collaboration teams. Our 

analysis reveals that the scalar-tensor theory of gravity is the best alternative]. 

 Key wards: Inflation, Graceful exit, Modified theory of gravity, Matter 

dominated era. 

1. Introduction 

 After some initial debate, cosmologists have unanimously and 

unambiguously come to a very weird conclusion that the universe is 

currently accelerating. Weird, since gravity is attractive, a fifth force 

(quintessence) must be responsible for such a phenomenon. General 

Theory of  Relativity (GTR) described by the equation 

��� = ���– 12	��� = 
��� 																																																																							… (1) 
where left hand side is the Einstein tensor which describes the curvature 

e-mail:1.daliasahamandal1983@gmail.com. 2.sanyal_ak@yahoo.com  
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of space time, and the right hand side is the energy-momentum tensor of 

baryonic matter and non-baryonic dark matter, � = 8��, �  being the 

Newton's gravitational constant; cannot address such phenomena. The 

reason being: the equation of state parameter is		�	 = �
� ≥ 0 (where � 

and � are the thermodynamic pressure and matter density respectively), 

while accelerated expansion of the universe requires a negative pressure, 

so that the equation of state parameter is  �� <– �
�, where, the subscript 

` ! stands for `effective'. To be precise, current data suggests �� <– "
�. 

Therefore, GTR somehow, has to be modified. Cosmological constant 

(Λ), for which �$ = �%�% =–1,	can resolve the issue single handedly, but 

then, what is a cosmological constant? A physical interpretation of it 

comes from high energy physics, in which one can compute a `constant' 

available in the nature, as the sum of vacuum energy densities of all 

types of matter existing in the universe. Unfortunately, the constant 

required for current acceleration of the universe is 120 order of 

magnitude smaller than the sum of vacuum energy densities. Thus, 

ΛCDM (cold dark matter) model was replaced initially by a quintessence 

field, which is essentially a scalar field, for which 

�� = ���� =
�
"&' "– ((&)�
"&'" + ((&).		 

Clearly, quintessence model does not admit the value of the equation of 

state parameter to go beyond the phantom divide line, � =–1,	since if, 

&'" ≪ ((&), then �� =–1. However, crossing of the phantom divide line 

is not excluded by observations. Therefore, different exotic models  

(K-essence, Tachyon, holographic model etc.) were proposed. These are 
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all dark energy models, since such fields interact none other than gravity 

itself. These fields essentially modify the energy-momentum tensor 

(��,), that is the right hand side of Einstein's equation of GTR. However, 

since all attempts to detect dark energy has failed(There is a very recent 

indication of direct detection of dark energy in XENON1T, that we shall 

discuss in brief in the conclusion), so cosmologists started modifying the 

left hand side of Einstein's equation, namely the curvature part. Einstein's 

equation of GTR(1) may be found under the variation of the so-called 

Einstein-Hilbert action, 

- = ./ �16��12–	 345 + 67 ,																																																																… (2)	
where, �	is the Ricci scalar, –	 is the determinant of the metric, and	67 

is the matter action. In order to modify the left hand side of Einstein's 

equation (1), it is required to replace Ricci scalar (�) by a generalized 

curvature scalar. A host of such models 8(�), 8(9), 8(�), 8(:)  etc., 

where, 9	 = 	�" + 4��,��, + ��,<=��,<=  is the Gauss-Bonnet term, � 

is the torsion term, :  is the non-metricity scalar, have so far been 

proposed. All these models can address late-time cosmic acceleration 

followed by an early decelerating phase. On the other hand, construction 

of a quantum theory of gravity also requires to modify  GTR, by 

incorporating higher order curvature invariant terms in the gravitational 

action1. It is therefore suggestive to check if these modified theories can 

explain early stage of cosmic evolution, an inflationary phase, in 

particular. 

Standard model of cosmology, the so-called `Friedmann-

Lemaitre-Robertson-Walker (FLRW) model' predicts that the universe 

initiated from a big-bang, represented by a hot thick soup of plasma. The 
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evidence of extremely hot big-bang has been experimentally verified 

through the detection of CMBR (Cosmic Microwave Background 

Radiation). However, causally disconnected regions appear to be 

isotropic up to 10–>  order of magnitude, called the horizon problem, 

which is not explained by FLRW model. Further, FLRW model does not 

explain flatness problem (the fact that the universe is almost flat at 

present, and a slightest deviation, would have collapsed it very early, or 

would have enormously expanded it, desisting to form structures). 

Finally, FLRW model does not also account for the structure (stars, 

galaxies, cluster of galaxies etc.) formation. All these issues may be 

addressed if there had been a stage of inflation (exponential or power law 

expansion of the scale factor ?(@)  ) in the very earlystage of 

cosmological evolution2 – 6. Although, there exists some models which 

appear to explain these issues7–9, inflation is prevalent, mainstream 

choice, and is considered to be a scenario, rather than a model. In this 

connection, it is suggestive to check, if proposed modified theories of 

gravity can accommodate inflation as well. Inflation is essentially a 

quantum phenomenon, which was initiated sometime between (10A4" to 

10A"B	C), after gravitational sector transits to the classical domain. To be 

more specific, it is a quantum theory of perturbations on top of a 

classical background, which means the energy scale of the background 

must be much below Planck scales. There is also recent evidence from 

the string theory swampland that the energy scale must be rather low for 

inflation. Despite the fact that inflation is a quantum phenomenon, most 

of the important physics may be extracted from the classical action itself, 

provided the quantum theory admits a viable semi-classical 

approximation. We have shown earlier that the models under 
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consideration, admit viable quantum dynamics and are classically 

allowed, since the semi-classical wave-functions oscillate about classical 

inflationary solutions. 

In view of the above discussions, in the following section of the 

present article, we consider five different well versed modified theories 

of gravity to study inflation. In particular, we inspect how far these 

models  fit with the currently released inflationary parameters10, 11, 

namely the tensor to scalar ratio D	 = 	16E < 	0.06,  whereE isthe first 

slow roll parameter, and the scalar tilt, or more conventionally the 

spectral index of scalar perturbation0.096	 < GH < 	0.097. Further, the 

number of e-folding should remain preferably within the range 40	 <
	J	 < 	70, to solve the horizon and the flatness problems. First four of 

these models are higher order theories, while one appearing at the end, is 

a non-minimally coupled scalar-tensor theory of gravity. The 

comparative study that we are going to perform, will render a selection 

rule to consider a particular modified gravitational action. In section3 we 

conclude. 

 

2. Inflation in different modified theories of gravity 

So far, all attempts to cast a viable (although unsuccessful) 

quantum theory of gravity addressed higher order scalar curvature 

invariant terms (�", ��,��,)) in the action. Further, Gauss-Bonnet term 

9 = 	 K�" + ��,��, + ��,<=��,<=L,  appears quite naturally as the 

leading order of the inverse string tension α' expansion of heterotic 

superstring theory12–15. But, Gauss-Bonnet term is topologically invariant 

in 4-dimension, which means, it is a total derivative term, and therefore 
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does not contribute to the field equations. However, when coupled to a 

scalar field (dilation), it contributes. In this context, it is noteworthy that 

the low energy limit of the string theory gives rise to the dilatonic scalar 

field, which is also found to be coupled with various curvature invariant 

terms16,17. Therefore, the leading quadratic correction gives rise to Gauss-

Bonnet term with a dilatonic coupling18. It is important to mention that 

the dilatonic coupled Gauss-Bonnet term plays a vital role at the late-

stage of cosmic evolution (pressure-less dust era), exhibiting accelerated 

expansion after a long Friedmann-like decelerating phase19, 20. The higher 

order theories under consideration therefore should contain these terms 

in different combinations. 

We shall work in the following homogeneous and isotropic 

Robertson-Walker metric, viz., 

3C" =–3@" + ?"(@) O 3D"1 − 
D" + D"(3Q" + sin" Q3&")U																			… (3) 
where, ?(@) is the scale factor. The Ricci scalar and the Gauss-Bonnet 

term for the above space-time (3) are givenby, 

� = 6W?X? + ?' ²?² + 
?²Z , 9 = 24 ?X?� (?'" + 
),																																	…	(4)	
which we shall require to cast the field equations. 

2.1 Case-1 

First, we start with the following generalized action considered earlier21. 

-� = .3452−	 /[(&)� − Λ\]" + ^(&)�" + _(&)9 − 12&,�& ,�

− ((&)	1																																																																													… (5)	
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The action contains undetermined coupling parameters 	[(&), ^(&), and 

_(&) and a cosmological constant term(Λ) being coupled to the reduced 

Planck!s	mass	\]" = �
ghi. 

2.1.1 Field equations and classical solutions 

The field equations, namely the `a' variation i.e. jkklequation, the j00l 

equation and the &  variation equation for the metric (3) are the 

following, 

2[ O2?X? + ?'"?" + 
?"U + 2[! O&X + 2?'&'? U + 2[!!&'"

+ 12^ O2 a&&&&? + 4?'?m?" + 3?X"?" − 12?'"?X?� + 3?'4?4 − 4
?X?�

+ 2
?'"?4 − 
"
?4	1 + 48^!&' O?m? + 2?'?X?" − ?'�?� − 
?'?�U

+ K24^"&' " + 	24^!&XL O?X? + ?'"?" + 
?"U + 16_!?X?'&'?"

+ 8_!&X O?'"?" + 
?"U + 8_"&'" O?'"?" + 
?"U + &'"2 − ( − Λ\]"

= 0																																																																																									 … (6) 
6[ W?'"?" + 
?"Z + 6[!&' o?'?p

+ 36^ W2?'?m?" − ?X"?" + 2?' ²?X?� − 3?'4?4 − 2
?'"?4 + 
"
?4Z

+ 72^!&' W?'?X?" + 2?'�?� + 
?'?�Z + 24_!&' W?'�?� + 
?'?�Z − Λ\]"

= W&'"2 + (Z																																																																					… (7) 
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&X + 3 ?'? &' + (! − 6[! W?X? + ?'"?" + 
?"Z
− 36^! W?X"?² + 2?'"?X?³ + ?'4?4 + 2
?X?� + 2
?'"?4 + 
"

?4Z
− 24_! W?'"?X?� + 
?X?�Z = 0																																																	 … (8) 

In the above, and throughout, an over-dot denotes time derivative, while 

prime denotes derivative with respect to the scalar field. Not all the 

above components of Einstein's equations are independent, since the j00l 

equation is the energy constraint equation. Thus it suffices to consider 

only the two independent components of Einstein's equations, viz. (7) 

and (8), for all practical purposes. A viable gravity theory must admit de-

Sitter solution([	 ∝ 	  st) in vacuum. As already explored earlier21, the 

above field equations admit the following de-Sitter solution in the 

spatially flat space (
	 = 	0)	space-time, 

? = ?u st; 	& = &u Ast,	 under the condition; 

[(&) = [u& ; 		((&) = 12 w²&² − Λ\]"; and	6^(&) + _(&)
= − 12w" W[u& + &"

24Z																																																											… (9) 
where, ?u, 	&u, [u  and w  are arbitrary constants, while ^(&)  and 

_(&)	 remain arbitrary functions of & , being related as above, after 

setting the constant of integration to zero without any loss of generality. 

2.1.2 Inflation under Slow Roll Approximation 

As mentioned in the introduction, the model under consideration 

admits a viable (Hermitian) quantum dynamics, while the semi-classical 

wave-function oscillates about the above classical inflationary solution 
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(9), and thus it is classically allowed. Hence although Inflation is a 

quantum mechanical phenomena, most of the important physics are 

inherent in the classical action. We therefore proceed to study inflation 

and see how far the inflationary parameters viz. the tensor to scalar ratio 

D  and the spectral index of scalar perturbation GH  fit with currently 

released data sets 	D	 < 	0.06  and 0.096	 < GH < 	0.097 , keeping the 

number of e-folding within the range 45	 < 	J	 < 	70,	required to solve 

the horizon and the flatness problems10, 11. For a complicated theory such 

as the present one, it is of course a very difficult task. However, we 

followed a unique technique to make things look rather simple, which is 

described underneath. We express equations (7) and (8) in terms of the 

Hubble parameter H in the spatially at space-time (
	 = 	0) as, 

6[y² = &"'
2 + [( + Λ\]" − K6[!&'y + 144^&'y� + 24_!&'y�{ 			… (10)	

and 

&X + 3y&' + [(! − (12[!y" + 144^!y4 + 24_!y4| = 0															 … (11) 
Above equations (10) and (11) are still formidably complicated to 

handle, and so before imposing the standard slow roll conditions, 

viz.}&X } ≪ 3y|&' | and &'² ≪ ((&), further simplification is required. One 

way is to use additional hierarchy of flow parameters22-25 in connection 

with additional degrees of freedom associated with the present model. 

Instead, we shall follow a completely different and unique technique. For 

example, redefining the potential as, 

�	 = 	( − 12y"([	 + 	12y"^	 + 	2y"_),																																										…	(12) 
equation (11) takes the following form of the standard Klein-Gordon 

equation, &X + 3y&' + �! = 0 … (13) 
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Clearly the evolution of the scalar field is driven by the re-defined 

potential gradient �! = ��
��, subject to the damping by the Hubble 

expansion 3y&' , as in the case of single field equation coupled to 

Einstein-Hilbert term. Note that the potential �(&)  carries all the 

information in connection with the coupling parameters of generalised 

higher order action under consideration. Further, assuming 

�	 = 	(	 + Λ\]" − 6y&'([! + 	24y"^! + 	4y"_!)																								… (14)	
equation (10) may be reduced to the following simplified form, viz. 

6[y² = &'"2 + �(&)																																																																															… (15) 
which is essentially the non-minimally coupled Einstein's j00l equation. 

It is noteworthy that, the above two choices (12) and (14) of �(&), do 

not contradict, since the two simply results in an evolution equation of 

the scalar field 

Table–1 

[uin	\]� &�	in	\] GH D J 

0.00036 

0.00037 

0.00038 

0.00039 

0.00040 

0.00041 

0.00042 

0.00043 

4.88810 

4.88822 

4.88833 

4.88845 

4.88856 

4.88868 

4.88879 

4.88890 

0.9693 

0.9684 

0.9676 

0.9667 

0.9659 

0.9650 

0.9642 

0.9633 

0.08322 

0.08553 

0.08784 

0.09016 

0.09247 

0.09478 

0.09709 

0.09940 

49 

48 

47 

45 

44 

43 

42 

41 

Data set for the inflationary parameters taking &� = 5.0\];�" = 0.084\]"; 
Λ = 1\]" and varying [u,	keeping GH within Planck's constraint limit. 
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Table–2 

[uin	\]� &�	in	\] GH D J 

0.000240 

0.000242 

0.000244 

0.000248 

0.000252 

0.000256 

0.000258 

4.88652 

4.88655 

4.88658 

4.88663 

4.88669 

4.88675 

4.88678 

0.9795 

0.9793 

0.9792 

0.9788 

0.9785 

0.9782 

0.9780 

0.05548 

0.05594 

0.05640 

0.05733 

0.05825 

0.05918 

0.05964 

74 

74 

73 

72 

71 

70 

69 

Data set for the inflationary parameters taking &� = 5.0\];�" = 0.84\]";	
Λ = 1\]" and varying [u,	keeping GH within Planck's constraint limit. 

&, which may be different from (9), since during inflation the Hubble 

parameter is slowly varying. Shortly, we shall show that & indeed falls 

with time, which has already been demonstrated in21. Now, let us enforce 

the standard slow-roll conditions &²' ≪ �	and	}&X } ≪ 3y|&' | , so that 

equations (15) and (13) finally reduce to, 

6[y² ≃ �, ... (16) 

and 

3y&' ≃ �!, ... (17) 

respectively. Combining equations (16) and (17), it is possible to show 

that the potential slow roll parameter E	equals the Hubble slow roll 

parameter (E� ) under the condition, 

E = − y'y" = [	 W�!
�Z" − [! W�!

�Z ; 		� = 2[ o�"� p																														… (18) 
Clearly, for 	[	 = constant, the second term vanishes and the standard 

relation is restored, while the other slow-roll parameter �  remains 

unaltered. Further since, 
�
�' = − �

"��� in view of equations (16) and (17), 

therefore,the number of e-folds (N) at which the present Hubble scale 
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equals the Hubble scale during inflation, may be computed as usual in 

view of the following relation: 

J(&) ≃ . y3@ = . y
&' 3&

��
��

= . o �2[�!p 3&,
��

��
t�

t�
																										… (19) 

where, &� and &� denote the values of the scalar field at the beginning 

(@�) and the end (@�) of inflation. Thus, slow roll parameters reflect all the 

interactions, as exhibited earlier23, 26, but here only via the redefined 

potential �(&)	 . Now, during inflation the Hubble parameter remains 

almost constant, and therefore while computing �(&), one can replace it 

by the constant  w, without any loss of generality. Thus, using classical 

solutions (9), we can express (12) as, 

12y²([ + 12y"^ + 2y"_) ≈ ����
" ,  such that, � = �

"�"&" − Λ\]", 
where, �² = w² + y² ≈ 2w². ... (20) 

Hence, the slow roll parameters along with the number of e-folds, read 

as, 

E	 = 4�4[u&(�"&" − 2Λ\]")" +
2�"[u(�"&� − 2&Λ\]"),			 

� = 4�"[u�²&³ − 2&Λ\]" 																																																																																	… (21) 
J = 14[u. W�²&² − 2Λ\]"�² Z��

��
3&

= 112[u K&�� − &��L − Λ\]"2�"[u K&� − &�L																		… (22) 
Taking &� = 5\], �² = 0.084\]"	and	Λ = 1\]", we exhibit our data 

sets in a pair of tables 1 and 2, and find that inflation ends (E	 = 	1) at 

around &� ≈ 4.49\].[uis varied differently in the two tables to keep  GH 
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within the experimental limit in the first, and D within the experimental 

limit in the second. In the first case, we see that it is not possible to 

reduce D below 0.08, while the second table depicts that GH exceeds the 

experimental limit. Of course, the Planck's data might vary a little for 

different models. In this respect, the fit is fair. 

 To show the consistency of our choice of redefined potential 

presented in equations (12) and (14), we combine the two, to obtain the 

following first order differential equation on &, 

W &� − 6[uw"&4 − 2Λ\]"&"Z3& = 12w 3@.																																																											 … (23) 
Although the above differential equation may be solved exactly, it is 

extremely difficult to study its nature. We therefore neglect the second 

term in the numerator with respect to the first and the first term in the 

denominator with respect to the second, in view of our data (table-1 and 

table-2). Under such approximation equation (23)may be expressed as: 

&' ≈ − �\�2Λw& �																																																																																																																… (24)' 	
Clearly, & falls with time. Additionally, it may be mentioned that the 

energy scale of inflation has been found to be sub-Planckian21 		y∗ ≈
10A>\]. Further, the model admits graceful exit from inflation, since the 

scalar field starts oscillating, &~ ± √���√"� sinK√2w@ − √2��wL,  many 

times over a Hubble time, driving a matter-dominated era at the end 

ofinflation21. 

2.2 Case-2 

 Next, we consider an even more general action explored in26, 

which is the following, 
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- = ./[(&)� + �̂(&)�" + "̂(&) o��,��, − 13�"p + _(&)9
− 12&,�& ,� − ((&)1 3452−	.																																					… (25) 

Note that here we consider the additional curvature squared term, viz. 

��," , with an additional & dependentcoupling parameter "̂(&). 
2.2.1 Field equations and classical solutions 

 Due to diffeomorphic invariance (energy constraint), only two 

components of Einstein's equations are independent, as mentioned 

previously. We therefore consider the j00l and the &	variation equations 

in the background of Robertson-Walker metric (3), which are, 

−6[?" (?'" + 
) − 6[!?'&'?
− 36 �̂ W2?'?m?" − ?X"?" + 2?'"?X?� − 3?'4?4 − 2
?'"?4 + 
"

?4Z
− 72 �̂!&' W?'?X?" + ?'�?� + 
?'?�Z + 6 "̂!&' W2?'�?� + 3
?'?� Z 

−24_!&' W?'�?� + 
?'?�Z + W&'²2 + (Z = 0																																																		 … (26) 
and 

−6[!(?"?X + ??'" + 
?)
− 36 �̂! W??X" + 2?'"?X + ?'4? + 
"

? + 2
?'"? + 2
?XZ
+ 12 "̂!(?'"?X + 
?X ) + 3?"?'&' − 24_!(?'"?X + 
?X )
+ ?�K& + (!X L = 0																																																											 … (27) 

The above field equations also admit the following de-Sitter solution in 

the spatially at space (
	 = 	0), 
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? = ?u st; & = &u Ast, under the condition, 

[(&) = [u& ; 			((&) = 12 w"&"; 		and	 "̂ − 2(6 �̂ + _)
= 1w" W[u& + &"

24Z																																																															… (28) 
where, ?u, &u, [u	and w are arbitrary constants while �̂(&), "̂(&) and 

_(&)  remain arbitrary functions of &  andare related through equation 

(28), after setting the constant of integration to zero without any loss of 

generality. However, for canonical quantization, arbitrariness should be 

removed, since one is required to order the operators. In (27) we 

therefore removed the arbitrariness on 	^  and _	 following a simple 

assumption viz. 

�̂ = [u12w"& = û�& ;	 "̂ = 2[uw"& = û"& ; 		_ = − &"
48w" = _u&"	

where	 û� = [u12w" ; 	 û" = 2[uw" ; 	_u = − 148w" 																																		… (29) 
where, û� and û" are constants. 

2.2.2 Inflation under Slow Roll Approximation 

As before, we express (26) and (27) in terms of Hubble parameter for 

spatially at space (
	 = 	0) as, 

6[y² = &"'
2 + [(

− K6[!&'y + 144 �̂!&'y� − 12 "̂!&'y�
+ 24_!&'y�)| 																																																																				… (30) 

and 

&X + 3y&' + [(! − K12[!y" + 144 �̂!&'y4 − 12 "̂!y4 + 24_!y4{ = 0	 
…(31) 
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respectively. Here again, instead of using additional hierarchy of flow 

parameters22-25, we define a potential in the following manner: 

� = ( − 12y"([ + 12y" �̂ − y" "̂ + 2y"_)																																	… (32) 
so that equation (31) takes the following standard form of Klein-Gordon 

Equation, 

&X + 3y&' + �! = 0																																																																																			 … (33) 
Clearly as before, the evolution of the scalar field is driven by the re-

defined potential gradient �! = ��
��,	subject to damping by the Hubble 

expansion 3y&' , as in the case of single field equation. Further, the 

potential �(&)carries all the information in connection with the coupling 

parameters of generalized higher order action under consideration. 

Further assuming, 

� = ( − 6y&'([! + 24y" �̂! − 2y" "̂! + 4y"_!)																												… (34) 
equation (30) may be reduced to the following simplified form, viz. 

6[y" = &'"2 + �(&)																																																																																		… (35) 
which is simply the Friedmann equation with a single scalar field and 

non-minimal coupling [(&). Here again,the two choices on the redefined 

potential �(&)made in (32) and (34), do not confront in any case, since 

the combination simply gives the evolution equation of the scalar field. 

During slow roll, the Hubble parameter yalmost remains unaltered. Thus 

replacing y by w, and using the forms of the parameters [(&)	presented 

in (28),along with �̂(&) , "̂(&)  and _(&)  assumed in (29), the two 

relations (32) and (34) lead to the following first order differential 

equation on &, 
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W&³ − 6[u&4 Z3& = w23@																																																																												 … (36) 
which can immediately be integrated to yield, 

ln ϕ + 2[u&� = w2(@ − @u)																																																																												… (37) 
Clearly, if & is not too large, ln & remains subdominant, and & falls-of 

with time, as expected during inflationary regime. 

 Now, under slow roll approximation K&'" ≪ �(&)and	&X ≪
3y}&' }L,	 the effective Friedmann (35) and the Klein-Gordon (33) 

equations take the same form of equations (16) and (17). Hence 
�
�' =

− �
"��,as before. Therefore,the slow roll parameters and the number of  

e-folds, at which the present Hubble scale equals the Hubble scale during 

inflation, may be computed as: 

E = − y'y" = [	 W�!
�Z" − [! W�!

�Z ; 		� = 2[ o�"� p	.																												… (38) 
J(&) ≃ . y3@ =t�

t�
. y

&' 3& ≃��
��

. o �2[�!p3&																												 … (39)��
��

 

where, &� and &� denote the values of the scalar field at the beginning 

(@�) and the end (@� ) of inflation. Thus, slow roll parameters reflect all 

the interactions, as exhibited earlier23–25, via the redefined potential 

�(&). Now, let us make the following choice of the redefined potential, 

� = 12�²	&² − �u, where,�² = w² + y² ≈ 2w²																															 … (40) 
where �u is a constant which is essentially the vacuum energy density, 

i.e. the cosmological constant, that we omitted from the action. Thus, the 
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slow roll parameters E  and �  (38) and the number of e-folding J  (39) 

takethe following forms, 

E = 4�4[u&(�"&" − 2�u)² +
2�"[u(�"&� − 2�u&) , � = 4�"[u�²&³ − 2�u&,							… (41) 

J	 = 14[u .
(�"&" − 2�u)�²

��
��

3&
= 112[u K&�� − &��L − �u2�"[u K&� − &�L																			… (42) 

Here again we present two sets of data in table 3 and table 4 taking 

&� = 1.54\]; 	�² = 0.9\]"; 	�u = 1\]4,	so that inflation ends (E = 1) 

around &� ≈ 1.49\]. In table 3, we have varied �u in such a manner 

(1.80 × 10A>\]� < [u < 2.15 × 10A>\]�)  that the scalar tilt, i.e. the 

spectral index lies very much within the specified range, i.e. 0.964 <GH< 

0.970. The number of e-folds 42 ≤ 	J ≤ 	50  is enough to solve the 

horizon and the flatness problem. However, the tensor to scalar ratio 

does not admit value D	 < 	0.06. On the contrary, in table 4, we havekept 

the tensor to scalar ratio within the specified limit D	 < 	0.06, and find 

that the spectral index goes beyond experimental limit. Further, the 

number of e-folds becomes a bit large. Since, Planck's data has been 

analyzed following a particular model, so some deviation is expected for 

more involved models, under present consideration. In this case also it is 

important to mention that, the energy scale of inflation has been found to 

be sub-Planckian	(y∗) ≈ 10A>\](27). The model also admits graceful 

exit from inflation, since the scalar field starts oscillatingj&~ �√"stl 

many times over a Hubble time, driving a matter-dominated era at the 

end of inflation27 . 
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Table–3 

[uin	10A>\]� &�	in	\] GH D J 

1.80 

1.85 

1.90 

1.95 

2.00 

2.05 

2.10 

2.15 

1.49419 

1.49424 

1.49429 

1.49433 

1.49438 

1.49442 

1.49447 

1.49451 

0.9699 

0.9690 

0.9681 

0.9674 

0.9665 

0.9657 

0.9649 

0.9640 

0.08201 

0.08429 

0.08657 

0.08884 

0.09112 

0.09340 

0.09568 

0.09796 

50 

49 

48 

47 

46 

44 

43 

42 

Data set for the inflationary parameters taking &� = 1.54\];	�" = 0.9\]"; �u = 1\]4 and varying [u,	keeping GH within Planck's constraint limit. 

Table–4 

[uin	10A>\]� &�	in	\] GH D J 

1.20 

1.22 

1.24 

1.26 

1.28 

1.30 

1.49355 

1.49358 

1.49360 

1.49362 

1.49365 

1.49367 

0.9799 

0.9796 

0.9792 

0.9789 

0.9786 

0.9782 

0.05467 

0.05558 

0.05650 

0.05740 

0.05832 

0.05923 

76 

75 

73 

72 

71 

70 

Data set for the inflationary parameters taking &� = 1.54\]; 	�² = 0.9\]"; 	�u =
1\]4 and varying [u,	keeping D within Planck's constraint limit. 

2.3 Case-3 

 Although, Gauss-Bonnet term is constructed from higher order 

curvature invariant terms, the beauty lies in the fact that, it does not 

contain anything above second derivative, and hence is free from ghost 

degrees of freedom and also renormalizable. The problem is, it suffers 

from the pathology of `Branched Hamiltonian'27, 28. The presence of 

cubic kinetic term and quadratic constraints appearing through Gauss-

Bonnet combination, makes the theory intrinsically nonlinear. Even its 

linearized version is cubic rather than quadratic. Since, the expression for 

velocities are multi-valued functions of momentum, it results in the so 
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called multiply branched Hamiltonian with cusps. This makes classical 

solution unpredictable, as at any instant of time, one can jump from one 

branch of the Hamiltonian to the other. Further, the momentum does not 

provide a complete set of commuting observable, resulting in non-

unitary time evolution of quantum states. Such a pronounced exotic 

behaviour does not allow Hamiltonian formulation following 

conventional Legendre transformation. There is no unique resolution to 

this issue. However, in (28) and (29), it was shown that the pathology 

may be bypassed by adding curvature squared term. Let us therefore take 

into account the action as considered earlier in (29) which is, 

- = ./ �16�� + ξ(&)(9 + ^�") − 12&,�&,� − ((&)12−	345… (43) 
Note that we have omitted scalar coupling with Einstein-Hilbert sector  

and introduced the same coupling parameterξ(&) with the Gauss-Bonnet 

and the �² term. 

2.3.1 Field equations and classical solutions 

Thej00l  and the & variation equations are, 

?'"?" = −96^ξ�� O2?'?m?" − ?X"?" + 2?'"?X?� − 3?'4?4 U − 192^��ξ!&' W?'?X?" + ?'�?�Z
− 64��ξ!&' W?'�?�Z + 8��3 W&' "2 + (Z																											… (44) 

– 24ξ!?'"?X– 36^ξ!??X"– 72ξ!?'"?X– 36^ξ!	 ?'4? + 3?"?'&' + ?�K&X + (!L
= 0																																																																																					 … (45)	

If we now seek classical de-Sitter solution in the form 

? = [u stand	& = &u Ast 																																																																			… (46) 
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then the coupling parameter and the potential are fixed as 

ξ(&) = ξ&A",			and	((&) = (� + (u&²,																																														 … (47) 
restricting the constants to (� = �s�

ghi , ^ = − �
B , and		(u = − s�

" ,			where 

ξ and w are constants. 

2.3.2 Inflation under Slow Roll approximation 

Note that during inflation the Hubble parameter varies slowly and hence 

we can replace the constant w  by y ,without loss of generality. Here, 

instead of redefining the potential as in the previous two cases, we 

consider an additional slow roll parameter viz. ¢� = 4yξ' ≪ 1, following 

the hierarchy of flow parameters22-25. Thus we have three slow roll 

parameters E, �, ¢�  at hand, in view of which (44) and (45) may be 

approximated to (29), 

y² ≃ 13\]" (,				and		y&' ≃ −13(:,																																																							 … (48)	
where :	 = £�

£ . Now, in view of the above form of a monomial potential 

and an inverse monomial GB coupling(47), namely (	(&) 	= (� 	+ 	(u&² 
and ξ(&) = ξ&A" , where (u, (�,ξ are constants, the slow roll parameters 

andthe number of e-folds may be expressed as, 

E = 2&²\]"
j£¤£¥ + &"l" , � = 2(u

j£¤£¥ + &"l 
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J = 12\]".
((� + (u&")(u& 3&��

��

= 12\]" O
(�(u ln W

&�&�Z + (&�" − &�")2 U																												… (49) 
Table–5 

(�(u in	\]" 
&�	in	\] D GH J 

-6.0 

-5.5 

-5.0 

-4.5 

-4.0 

-3.5 

-3.0 

-2.5 

-2.0 

-1.5 

-1.0 

3.2566 

3.1566 

3.0523 

2.9432 

2.8284 

2.7071 

2.5780 

2.4392 

2.2883 

2.1213 

1.9319 

0.1244 

0.1240 

0.1235 

0.1231 

0.1226 

0.1221 

0.1217 

0.1212 

0.1208 

0.1203 

0.1199 

.9685 

.9687 

.9688 

.9690 

.9691 

.9693 

.9694 

.9696 

.9697 

.9698 

.9699 

60 

60 

61 

61 

62 

62 

63 

64 

64 

65 

65 

Data set for the inflationary parameters taking&� = 16.4\] , (u = 1\]" 

In table 5 we present a data set under the choice &� = 16.4\] and 

(u = 1\]", , while 
£¤£¥ is varied within therange −6.0\]" < £¤£¥ <

−1.0	\]".	Although the spectral index of scalar perturbation lies within 

the experimental limit (0.96 ≤ GH ≤ 	0.97) and the number of e-folding 

ranges within 60	 < 	J	 < 	65, which is sufficient to solve the horizon 

and flatness problems, it has not been possible to keep the tensor to 

scalar ratio (D < 	0.1 ) within the observational limit. Further, even 

though the model allows graceful exit from inflation, since the scalar 
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field exhibit oscillatory behaviour as o&~¦£¤£� sinK√2@2(u ± ��2(uLp	at 

the end of inflation; however the energy scale of inflation is super 

Planckian		y∗ ≈ 9.38\�	. Nonetheless, before discarding this model, we 

need to apply redefined potential technique, instead of the additional 

slow roll parameter¢� , which we pose in the future. 

2.4 Case-4 

 In this subsection, we shall consider yet another higher-order 

modified gravitational action, which has not been treated earlier. Gauss-

Bonnet term being topologically invariant, does not contribute to the 

field equation, as already mentioned. Therefore, a dilatonic (scalar) 

coupling is necessary. Recently, 8(9)	theory has been proposed as an 

alternative to the dark energy. It is interesting to note that different 

powers (other than one) of the Gauss-Bonnet term 9 , may be 

incorporated in the action without dilatonic coupling. It has been found 

that a typicalform of 8(9) 	= 	8u97 + 8�9§, might unify early inflation 

with the late-time cosmic acceleration29 . Particularly for �	 < �
",late-

time acceleration may be addressed, while for G	 > 	1, early inflation is 

admissible. Since we are interested in the evolution of the early universe, 

so we leave the first term and choose G = 	2, for simplicity, and express 

the action in the presence of a Gauss-Bonnet dilatonic term, which as 

mentioned is an outcome of weak field approximation of different 

versions of string theory, as: 

-	 = . /[(&)(� − 2Λ) + ^(&)9 + _9" − 12&,�& ,�

− ((&)12−	345																																																											 … (50)	
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2.4.1  Field equations and classical solutions 

The j00l  and the &  variation equations in connection with the above 

action (50) in the background of Robertson-Walker metric (3) are the 

following: 

2[ W3?'"?" − ΛZ
+ 18_ O64 W3?'B?X?© + ?'>?m?B Z + 96W?'4?4 + ?'"?X?� Z
− 576W?'g?g + ?'B?X?© Z + 480?'g?g U + 6[!&'?'? + 24^!&	' ?'�?�
= 12&'" + ((&)																																																																	… (51) 

&X + 3 ?'? &' + (! − 6[! W?'"?" + ?X?Z + 2Λ[! − 24^! W?'4?4 + ?'"?X?� Z 

+24^!?'4?4 = 0																																																																																												. . . (52) 
Now seeking inflationary solution of the above classical field equations 

in the following standard de-Sitter form, 

?	 = 	?u st; 	& = &u Ast ... (53) 

the parameters [, ^ and potential (	(&) are fixed as, 

[(&) = ?u& ; 		^(&) = − &"
48w" − [u& o 12w" − Λ12w4p = −[u û& − �̂&² 

((&) = 12 w"&" − 576_wg; 			 û = o 12w" − Λ12w4p ;		 �̂ = 148w" ; 		_ = _u 

	… (54) 
where, ?u, [u, _u, &u,  and w	 are arbitrary constants, while constants 

û, 	 �̂ are related though w. 

2.4.2 Inflation under Slow Roll Approximation 

As before, let us express equations (51) and (52) in terms of the Hubble 

parameter y in the spatially at space(
	 = 	0) respectively as, 
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6[y² = 576_uyg − 6[!&'y − 24^!&'y� + (( + 2Λ[) + �' �
"  ...(55) 

and 

&X + 3y&' = −(! − 2[!Λ + 12[!y" + 24^′y4.	 ... (56)	
As in case-1 and case-2, here again we reduce the above set of highly 

complicated equations by redefining the potential, instead of using the 

additional hierarchy of flow parameters22-25. For example, choosing the 

potential as, 

� = ( + 2[Λ − 12y"([ + 2y"^) ... (57)	
the above consideration again modifies the equation (56) to the standard 

form of Klein-Gordon Equation as, 

&X + 3y&' + �! = 0																																																																																			 … (58) 
Further, assuming 

� = ( + 2[Λ + 576_uyg − 6y&'([! + 4y"^!) ...(59)	
equation (55) may also be reduced to the following simplified form, viz. 

6[y² = &'"2 + �(&)																																																																																		… (60) 
Here again we mention that, the two choices of the redefined potential 

�(&) made in (57) and (59), do notcontradict each other, rather equating 

the two redefined potential, one obtains the following first order 

differential equation on &  (since the Hubble parameter being slowly 

varying, may be treated almost as a constant): 

&'(@) = 2y[ + 2y�^ + 96_uy©
[! + 4y"^! 																																																										… (61)	

Shortly, the behaviour of  & with time will be exhibited. We now enforce 

the standard slow-roll conditions &' " ≪ �	 and }&X } ≪ 3y|&' | , on 

equations (60) and (58), which thus finally reduce to, 

6[y² ≃ � ...(62)	
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and 3y&' ≃ −�′ ... (63) 

respectively. Let us now compute the functional form of �	 = 	�(&). For 

this purpose, we consider the same quadratic form of the potential as, 

((&) = �
" w²&² − 576_uwg,  along with given forms of  [(&), ^(&)  in 

(54), which satisfy classical de-Sitter solutions. As already mentioned, 

during inflation the Hubble parameter remains almost constant, and 

therefore while computing �(&) , one can replace it by the constant 

y ≈ w, without any loss of generality. Thus from (57) one obtains, 

�	 = 	w²&² − 576_uwg = �²&² − «u ...(64)	
where �  may be treated as the mass of the scalar field and 

«u = 576_uwg . Now, for the above form of �(&) (64), the slow roll 

parameters read as, 

E = 4�4[u&(�"&" − «u)" +
2�"[u(�"&� − &«u) , � = 2�"[u�"&� − &«u, 

J = 14[u.
(�"&" − «u)�²

��
��

3&
= 112[u K&�� − &��L − «u8�"[u K&� − &�L,																		… (65) 

Here again, we compute the inflationary parameters taking &� =
3.40\] and �² = 1 × 10A�u\]" . In table 6 we consider «u = 7.10 ×
10A�u\]4  and vary [u  within the range 0.0070\]� < [u <
0.0076\]�,		so that the spectral index lies within the experimental limit 

0.966	 < GH < 0.970. Although the number of e-folds remainwithin the 

range 51	 < 	J	 < 	56 , which is sufficient to solve the horizon and 

flatness problems, the tensor to scalar ratio cannot be reduced below 

D	 = 	0.09.  Therefore, although D fits fairly well with the Planck's 
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data10,11, it does not fall within the range specified by other experiments, 

viz. BAO, BICEP, BK15 Keck Array data. In table 7, we fix 

«u = 6.35 × 10A�u\]4 and vary [u within the range 0.0075\]� < [u <
0.0081\]�.	As a result, the specified range of spectral index is relaxed. 

None the less, it is still not possible to keep D	 < 	0.07. 

Table–6 

[uin	\]� &�	in	\] GH D J 

0.0076 

0.0075 

0.0074 

0.0073 

0.0072 

0.0071 

0.0070 

2.61173 

2.61207 

2.61242 

2.61272 

2.61312 

2.61348 

2.61383 

0.9668 

0.9673 

0.9677 

0.9681 

0.9686 

0.9690 

0.9694 

0.0992 

0.0979 

0.0966 

0.0953 

0.0940 

0.0927 

0.0914 

51 

52 

53 

54 

54 

55 

56 

Data set for the inflationary parameters taking &� = 3.4\];�² = 1 ×
10A�u\]";	«u = 7.10 × 10A�u\]4  and varying [u,	 keeping GH  within Planck's 

constraint limit. 

Table–7 

[uin	\]� &�	in	\] GH D J 

0.0081 

0.0080 

0.0079 

0.0078 

0.0077 

0.0076 

0.0075 

2.46388 

2.46423 

2.46457 

2.46492 

2.46527 

2.46562 

2.46598 

0.9738 

0.9741 

0.9745 

0.9748 

0.9751 

0.9754 

0.9754 

0.0796 

0.0786 

0.0776 

0.0766 

0.0756 

0.0747 

0.0737 

67 

68 

69 

69 

70 

71 

72 

Data set for the inflationary parameters taking &� = 3.40\]; 	�² = 1 ×
10A�u\]";	«u = 6.35 × 10A�u\]4 and varying [uin such a manner that D is small. 

Let us therefore proceed to find the energy scale of inflation. In view of 

the above form of �(&) (64), we obtain the following expression from 

equation(60), 
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6[u& y" = �"&" − «u 																																																																														… (66) 
Now, if we choose the value of «u = 7.10 × 10A�u\]4, together with a 

value of [u = 0.0075\]�	 and take 	�² = 1 × 10A�u\]", &� = 3.40\],	 
as depicted in the table-6, we simply find, 

y² = (�"&� − «u&)6[u , andhence, y² ≈ 3.37 ×	10Ag\]" 							… (67)	
Therefore, the energy scale of inflation has been found to be sub-

Planckian (y∗ ≈ 10A4\]). 
To exhibit consistency of our choice of redefined potential presented in 

(54), we treat the Hubble parameter to be nearly constant during inflation 

y ≈ w. As a result, equation (61) may now be expressed as, 

&'(@) = w&[2«u& + 4Λ[u − w"&�|
4[u(3w" − Λ) − 2w²&³ 																																																							… (68) 

The above differential equation cannot be integrated analytically. None 

the less, since «u ≈ 10A�u\]4  andw²	 ≈ 10Ag\]," the terms associated 

with these parameters may be neglected from the numerator and 

denominator. Asa result, (68) may be suitably approximated to, 

&'(@) = − /w&(4[uΛ)4[u¬ 1 , that	is	&' = −w&																																				 … (69) 
This is a remarkable outcome, since even after making an additional 

assumption of redefined potential, the scalar field evolves identically as 

in the classical de-Sitter solution (53). Having shown that & decays, let 

us now express equation (60) as, 

3y"
�" = &2[u W

&'²2�² + &² − «u�"Z																																																														… (70) 
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Note that for single scalar field, the above equation reads as: 3y² =
�

"��� K&'" + 2�"&" − 2«uL.		Since at the end of inflation, 
�
"�¥~226\]A", 

according to the present data set, so once the Hubble rate (H) falls below 

�, this equation (70) may be approximated to, 

&'² ≈ −2(�"&" − «u), 																																																																													… (71) 
which may immediately be integrated to yield, 

&(@) = ± 2«u tan®�K√2@ − @uL{
�¦tan²®�K√2@ − @uL{ + 1																																																	… (72) 

and may further be simplified to obtain 

&(@) = ±2«u� sin®�K√2@ − @uL{																																																									… (73) 
Where @u  is the constant of integration. Thus the scalar field starts 

oscillating many times over a Hubble time, driving a matter-dominated 

era as inflation ends. 

2.5 Case-5 

 All the modified theories of gravity considered so far are higher 

order theories. There is yet another class of modified theories, viz. the 

non-minimally coupled scalar tensor theories of gravity. Such theories 

are essentially dark energy quintessence models. Here we consider a pure 

(having regular kinetic energy term and being devoid of higher-order 

terms) non-minimally coupled scalar-tensor theory of gravity, as 

considered in earlier30 ,for which the action is expressed in the form, 

- = .O¯(&)� − �(&)& &,�& ,� − ((&)ℒ7U2−	345																				 … (74) 
where, ℒ7  is the matter Lagrangian density, ¯(&)  is the coupling 

parameter, while, �(&) is the variable Brans-Dicke parameter. 
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2.5.1 Field equations and classical solutions 

The general field equations corresponding to action (74) are, 

o��, − 12	�,�p ¯(&) + 	�,□¯(&) − ;̄�;, − �(&)& &,�&,,
+ 12	�, W12&,�& ,� + ((&)Z = ��� 																														… (75) 

�¯! + 2�(&)& & + W�!(&)& − �(&)&" Z&,�&,� − (!(&) = 0												 … (76) 
where prime denotes derivative with respect to & , and □ denotes 

D'Alembertian, such that, □¯(&) = ¯"&,�&,� − ¯′	□&  The model 

involves three functional parameters viz. the coupling parameter ¯(&), 
the Brans-Dicke parameter�(&)and the potential (	(&). It is customary 

to choose these parameters by hand in order to study the evolution of the 

universe. However, we have proposed a unique technique to relate the 

parameters in such a manner, that choosing one of these may fix the 

rest31–34. We have shown that there exists a general conserved current 

which is admissible by the above pair of field equations, as demonstrated 

in30-35 leading to 

((&) ∝ ¯(&)² ... (77)	
It is convenient and hence customary to study inflationary evolution in 

the Einstein's frame under suitable transformation of variables, where 

possible. In the very early vacuum dominated era, symmetry holds, and 

thus we can express the action (74) in the form, 

- = .O¯(&)� − ²(&)2 &,�& ,� − (′(&)U2−	345 																											… (78) 
where, ²(&) = 2³(�)

� .	 Under a conformal transformation36 

	´�, = ¯(&)	�, ,																																																																																							… (79) 
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the above action (78) may be translated to the following Einstein's frame 

action as, 

- = ./�´ − 12µ´,�µ ,́� − (́ Kµ(&)L12−	´345																														 … (80) 
where, the subscript `¶′  stands for Einstein's frame. The effective 

potential (́  and the transformed scalar fieldµin the Einstein's frame may 

be found from the following expressions, 

(́ = ((&)¯"(&) ; 		and,			 o3µ3&p
" = ²(&)¯(&) + 3¯!"(&)¯²(&)

= 2�(&)&¯(&) + 3¯!"(&)¯"(&) 																																																						… (81) 
2.5.2 Inflation under Slow Roll approximation 

 Inflation with such a non-minimally coupled scalar-tensor theory 

of gravity is undergoing serious investigation over several decades37–47. 

In view of the action (80), one can cast the field equations, viz. the 

Klein-Gordon and the j00l equations of Einstein in the background of 

Robertson-Walker metric (3)as, 

µX + 2yµ' + 
u(́! = 0,														3y² = 12µ' ² + 
u(́ 																												… (82) 
where, the Hubble parameter is defined as y = �' ·�·,	and 
u = 1\]", while 

the slow-roll parameters and the numberof e-folding take the following 

forms, 

E = W(́!
(́ Z" o3µ3&p

A" 	 ; 		� = 2 �W(́"
(́ Z o3µ3&p

A" − W(́!
(́ Z" o3µ3&p

A� 3"µ3&"� ;	 
J = . y3@ = 12. 3&

√E
�¸

�¹
3µ3& .t�

t�
																																																												… (83) 
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In the above, @� and @� denote time for the beginning and the end of 

inflation respectively. 

1. Quadratic Potential 

 We should choose the same form of quadratic potential for the 

comparative study under consideration. Thus, in view of the symmetry, 

(77) if we choose ¯(&) = ū& then ((&) = �²&² + «u, where we have 

added a constant«u  in the potential without loss of generality. The 

parameters of the theory under consideration can therefore be expressed 

as (31), 

�(&) = �u" − 3 ū"2 ū , 3µ3& = �u
ū& , (́ = 1̄

u" (�" + «u&A"),		 
E = 4�¥�º¥�³¥�(º¥»7���)� ,   � = g�¥�º¥³¥�(º¥»7���)	,	 
J = �u"4 ū"«u" O�" W&�"2 − &�"2 Z + «u(ln &� 	− ln &�)U																										… (84) 
In view of the above forms of the slow roll parameters (84), we present 

table-8, underneath, corresponding to �²	 > 	0. The wonderful fit with 

the latest data sets released by Planck10,11 is particularly significant 

because,	0.959	 < GH < 	0.970, while D	 < 	0.033. Further, the number 

of e-fold (40 ≤ 	J ≤ 	53)  is sufficient to alleviate the horizon and 

flatness problems. 

 Now using the above form of (́  (81) and taking the values of 

	�² , «u , &�  from table-8, we obtain the followingexpression from 

equation (82), 

3y² = 
u(́ = 1̄
u" o�" + «u&"p\]" ≈ 10 × 10A�4\]" 																							… (85) 
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 Hence, the energy scale of inflation has been found to be sub-

Planckian	y∗ ≈ 10A©\]. Additionally, this model also gracefully exits 

from inflationary regime, since the scalar field exhibits oscillatory 

behaviour &~ �
"7� /(1 − �"«u) cos o2"7²

³¥ @p1, at the end of inflation. 

Thus the scalar field starts oscillating many times over a Hubble time, 

driving a matter-dominated era at the end of inflation. 

Table–8 

&�in	\] �u	in	\] D = 16E GH J 

1.01905 

1.01802 

1.01702 

1.01605 

1.01510 

1.01419 

1.01329 

1.01242 

1.0116 

1.0107 

1.0099 

6.5 

6.6 

6.7 

6.8 

6.9 

7.0 

7.1 

7.2 

7.3 

7.4 

7.5 

0.03192 

0.03096 

0.03004 

0.02917 

0.02833 

0.02752 

0.02675 

0.02601 

0.02531 

0.02463 

0.02397 

.9605 

.9617 

.9629 

.9639 

.9650 

.9660 

.9669 

.9678 

.9687 

.9696 

.9704 

41 

42 

44 

45 

46 

48 

49 

50 

52 

53 

55 

Data set for the inflationary parameters taking,¯(&) = ū&, ū = �
"\], &� = 2.0\],

«u = −0.9 × 10A��\]4, �² = 1.0 × 10A��\]".	
Such astounding fit with the experimental data provokes to study the 

late-stage of cosmic evolution. In this connection, we mention that the 

choice of the quadratic form of potential was undertaken due to the fact 

that de-Sitter solution for all the four higher-order modified theories of 

gravity considered here, restricts the potential in its quadratic form only. 

Nonetheless, in an early work35, a quartic potential was taken into 

account, and it was shown that it can account for the late-stage of cosmic 
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evolution, with excellence. In the following we therefore study inflation 

in view of quartic potential. 

2. Quartic potential 

In an earlier work35, relaxing the symmetry, the coupling 

parameter and the potential were chosen as ¯(&) = &²,	 and ((&) =
(u&4 − ½&², so that, the parameters of the theory under consideration 

can be expressed as, 

�(&) = �u" − 12&²2& ,				 3µ3& = �u&" , 		(́ = (u − ½&" ,																												… (86) 
E = 4½"&"

�u"((u&" − ½)" , � = − 4½&"
�u"((u&" − ½),	 

J = �u"4½ O(u lnK&� − &�L + ½2 W 1&�" −
1&�"ZU																																										… (87) 

It is important to mention that the same form of potential was also 

considered to study late-time cosmic acceleration48. The reason for such 

a choice of the potential was also clarified in35. In a nut-shell: in the non-

minimal theory, the flat section of the potential (	(&), responsible for 

slow-rollover, is usually distorted. However, generalizing the form of 

non-minimal coupling by an arbitrary function ¯(&) , Park and 

Yamaguchi49 could show that the flat potential required for slow roll, is 

still obtainable when (́  is asymptotically constant. Here, initially when 

& ≫ ¦¿
£¥, the second term may be neglected, so that (́ ≈ (u, and the 

potential becomes flat, admitting slow roll. Inflationary parameters were 

found to fit experimental data released (Planck's collaboration-2016) by 

the time the work35 was carried out. However, over years, Planck's data 

puts up tighter constraints on inflationary parameters, and so it is quite 
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reasonable to check, if this form of the quartic potential passes the said 

constraintlimits10, 11. 

Case-A 

In the following table 9, we present our computed results on 

inflationary parameters, taking &� = 1.3\], ½ = 1.0 × 10A"u\]"  and 

(u = 1.1 × 10A"u . It is found that the spectral index of scalar 

perturbation rangesbetween 0.959	 < GH < 	0.970, the tensor to scalar 

ratio remains around D	 ≈ 0.06, and the number of e-folding is around 

J ≈ 50, showing marvellous fit with the currently released data set10, 11. 

Table – 9 

&�in	\] �u	in	\] D = 16E GH J 

.9753 

.9748 

.9743 

.9739 

.9734 

.9730 

.9726 

.9722 

42 

43 

44 

45 

46 

47 

48 

49 

0.08300 

0.07927 

0.07571 

0.07238 

0.06927 

0.06636 

0.06362 

0.06105 

.9599 

.9618 

.9636 

.9650 

.9666 

.9680 

.9693 

.9706 

38 

40 

42 

44 

46 

48 

50 

52 

Data set for the inflationary parameters taking,¯(&) = &", &� = 1.3\] , 
	½ = 1.0 × 10A"u\]", (u = 1.1 × 10A"u.	

Let us therefore proceed to find the energy scale of inflation. In 

view of the above form of (́  (86), and using(81), we obtain the 

following expression from equation (82), 

3y² ≈ 
u(́ = o(u − ½&"p\]" ≈ 50.8 × 10A""\]" 																											… (88) 
The numerical value of 3H2 is an outcome of the values of  (u, ½, and &� 
presented in table-9. Clearly, the energy scale of inflation is sub-

Planckian 	(y∗ ≈ 4.11 × 10A��\]).	 Exact solution of equation (82) 
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using Mathematica,does not evince oscillatory behaviour of the scalar 

field at the end of inflation. We therefore choose an oscillatory 	&  a-

priori, and see if the consequence is physically admissible. Let us 

therefore assume, 

& = exp(k�@) …(89) 

Equation (82) may therefore be expressed as, 

6y² = 2
u o(u − ½&"p − �"�u"&" 																																																														… (90) 
Now taking the numerical values of the parameters from table-9, viz. 

(u = 1.1 × 10A"u,			½ = 1.0 × 10A"u\]",			�u = 45\],	 
&� = 0.973\], and	
u = 1\], we get, 

6y² ≈ 8.58 × 10A""\]" − 2139�²\]"                                           … (91)	
If �² = 1 × 10A">, then 

6y" ≈ 6.441 × 10A""\]", or, y² ≈ 1.07 × 10A""\]"               …(92)	
Hence, y = 1.03 × 10A��\].  As repeatedly mentioned, Hubble 

parameter remains almost constant during inflation. It is called the scale 

of inflation, which is, y∗ ≈ 4.11 × 10A��\]	in the present model. As 

inflation halts (E = 	1) Hubble parameter decreases fast and we observe 

that as it reaches one-fourth the value of theHubble scale (y∗ = 1.03 ×
10A��\]),  the scalar field starts oscillating many times over a  

Hubble time, driving a matter-dominated era at the end of inflation. 

Consequently, graceful exit from inflation is also evinced. 

Case-B 

Quartic potential under current consideration has magical 

enchantment. The reason is, one can change the parameters over a wide 

range, and yet end up with outstanding data fit. In what follows, we show 

that, even setting both the parameters ½ and (u to negative values, and 
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there after also interchanging their values, amazingly nice fit with 

Planck's data is realized. In the table 10, we present our computed results 

on inflationary parameters, taking  &� = 1.5\], ½ = −1.1 ×
10A"u\]"	and	(u = −1.0 × 10A"u.  The spectral index of scalar 

perturbation isfound to range between 0.960	 < GH < 	0.970, while the 

tensor to scalar ratio ranges between 0.059	 < 	D	 < 	0.078 , and the 

number of e-folding is around J	 ≈ 50. In table 11, on the contrary, the 

values of ½  and (u  are interchanged,and the data set remains almost 

unaltered. Clearly, the data sets in both situations exhibit magnificent fit 

with the currently released data set10, 11. 

Table–10 &�in	\] �u	in	\] D = 16E GH J 

1.07598 

1.07533 

1.07470 

1.07471 

1.07354 

1.07299 

1.07247 

41 

42 

43 

44 

45 

46 

47 

0.07838 

0.07468 

0.07125 

0.06805 

0.06506 

0.06226 

0.05964 

.9604 

.9622 

.9640 

.9656 

.9671 

.9685 

.9698 

38 

41 

43 

45 

47 

49 

51 

Data set for the inflationary parameters taking, ¯(&) = &", &� = 1.5\], ½ =−1.1 × 10A"u\]", (u = −1.0 × 10A"u. 

Table–11 &�in	\] �u	in	\] D = 16E GH J 

.9753 

.9748 

.9743 

.9739 

.9734 

.9730 

.9726 

.9722 

42 

43 

44 

45 

46 

47 

48 

49 

0.08309 

0.07927 

0.07571 

0.07238 

0.06927 

0.06636 

0.06362 

0.06105 

.9599 

.9618 

.9635 

.9650 

.9666 

.9680 

.9693 

.9706 

38 

40 

42 

44 

46 

48 

50 

52 

Data set for the inflationary parameters taking,¯(&) = &", &� = 1.3\],		 
½ = −1.0 × 10A"u\]", 	(u = −1.1 × 10A"u.	
The energy scale of inflation is sub-Planckian	(y∗ ≈ 10A��\]) taking 

into account 
u = −1\]" for both thedata sets presented in table 10 and 



90               DALIA SAHA AND ABHIK KUMAR SANYAL 

table 11. The oscillatory behaviour of the scalar field is as exhibited 

earlier. 

The beauty of the quartic potential with non-minimally coupled 

scalar-tensor theory of gravity was explored earlier, in connection with 

the later stage of cosmic evolution, taking into account the 

thermodynamic pressure (�) and the energy density (�) of the baryons 

and the CDM35. Here, we brief the outcome. In the radiation dominated 

era (�	 = 	 �� �) , the scalar field admits a solution in the form,  

& = �¥2(ÂtAt¥),  while the scalefactor evolves like the usual Friedmann 

solution, viz. ? = ?u2(-@ − @u). In the pressure-less dust dominated era, 

the scale factor admits a solution (? = ?u sin ℎ@�Ä)	 , which had been 

graphically illustrated in35. The graphical representation depicts that at 

the early stage of the pressure-less dust (�	 = 	0)	era, the universe had 

undergone Friedmann-like decelerated expansion ?	 ∝ 	 @"/�,  while 

accelerated expansion initiated at the late stage of cosmic evolution 

around red-shift Æ	 ≈ 0.78,  which is in perfect agreement with 

experimental data. Additionally, other cosmological parameters were 

computed and it was found that:  

1.  The present value of the scale factor is exactly	(?u 	= 	1.0),  
2. The present value of the Hubble parameter is 

yu = 69.24	²�. CA�\��A�,  

3.  The age of the universe is @u = 13.86	�ÇD and hence,  

4. yu@u 	= 	1.01,  
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5.  The deceleration parameter È remains almost constant		È	 ≈ 	0.5, till 

the value of redshift Æ	 = 	4.0, confirming a long Friedmann-like 

matter dominated era,  

6.  The present value of deceleration parameter is È	 = 	−0.59,  

7.  The present value of the effective state parameter is 

therefore,����u = −0.7,  

8.  Considering, as usual, that the CMBR temperature falls as ?A� , and 

its value at decouplingto be ���É ≈ 	3000², the present value of it 

has been found to be �u = 	2.7255².  

All these agree perfectly with current observation.  

 

3. Concluding remarks 

Seeds of structure in the universe are the density variations 

known as the primordial fluctuations. The prevalent and most widely 

accepted theory that can explain the origin of the seeds of perturbation is 

the cosmic inflation, which occurred soon after Planck's epoch 

K@� = 10A4�CL . According to inflationary paradigm, the exponential 

growth of the scale factor caused quantum fluctuation of the inflation 

field (the scalar field that we considered here) to be stretched beyond the 

horizon and freeze. Later, as inflation halts, these seeds of perturbation 

enter the horizon and form structures. Primordial fluctuations are 

typically described by a power spectrum, which gives the power of 

variation of the function of spatial scale. Both the scalar and the  

tensor fluctuations follow a power law. The ratio of tensor to the  

scalar power spectra, called the tensor to the scalar ratio, is given 

by	D = 2 |<Ê|�|<Ë|�,	where, |¢Ì|" and |¢Í|" are the tensor and scalar modes of 



92               DALIA SAHA AND ABHIK KUMAR SANYAL 

perturbation respectively, and the factor 2 arises due to the presence of 

two polarizations of tensor modes. While Planck's collaboration  

teams10,11alone constrain D	 < 	0.1 , the combined data from other 

experiments viz. BAO, BICEP2, and BK15 Keck Array, tightens the 

constraint to D	 < 	0.06. Now, the scale-dependence of the CMB power 

spectrum constrains the slope of the primordial scalar power spectrum, 

conventionally parameterized by the power-law index GH,  where 

GH 	 = 	1	 corresponds to a scale-invariant spectrum. The matter and 

baryon densities also affect the scale-dependence of the CMB spectra in 

a way that differs from a variation in GH , leading to relatively mild 

degeneracies between these parameters. Assuming that the primordial 

power spectrum is an exact power law, we find GH = 	0.9649	
±.0042	which is 8µ	away from scale-invariance (GH = 1). Further, BAO 

data also tightens the |GH|constraint by a little amount. Combining all 

data, viz. TT, TE, EE + low E + lensing + BK15 + BAO, D is constrained 

even further to D	 < 	0.058 with GH 	= 	0.9668 ± 	0.0037.	
It is therefore worth to check the viability of different 

gravitational actions proposed over years, in connection with the 

currently available inflationary data sets. Note that all the experimental 

data are analyzed with a standard model viz. the single minimally 

coupled scalar field model. Hence, the result is expected to vary slightly, 

depending on the models. In this sense, all the four higher order theories 

taken up in the present analysis show quite a nice fit with the 

experimental data sets. However, one can deselect case 3, since the 

energy scale of inflation is super-Planckian, although further 

investigation is necessary. It is also required to see if the other three 

models show Friedmann-like behaviour (? ∝ √@) in the radiation 
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dominated era which initiated soon after the graceful exit from inflation. 

It is further suggestive to check if these models exhibit a long 

Friedmann-like pressure-less dust dominated era (? ∝ @"/�) , after 

photons decoupled and prior to the recent accelerating phase. Analytical 

solutions are not available for these complicated models, and future task 

is to numerically simulate these models in the matter dominated eras. On 

the contrary, the non-minimally coupled scalar-tensor theory (case 5) 

show excellent fit with the available data and passes the tightest 

constraints imposed on the inflationary parameters. Since de-Sitter 

solution for all the higher order theories under consideration is 

admissible with standard square law potential (( = �"&"), we fixed it 

for the non-minimally coupled scalar-tensor theory of gravity too. It is 

therefore required to see if the model with square law potential, 

potentially behaves in the matter-dominated era also. Nevertheless, with 

a different (quartic) potential this has been achieved earlier, which 

showed excellent agreement with FLRW model until recently, before it 

enters an accelerated phase of expansion. 

There is a recent claim for direct detection of dark energy50. 

XENON1T, operating thousands of feet underground the Italian 

mountain `Monte Gran Sasso', is the most sensitive detector on earth 

searching for WIMP (Weakly Interacting Massive Particle) dark matter. 

Last year, it reported 53 excess recoil electrons than estimated. This was 

a great puzzle. In a recent publication50 the authors assumed interaction 

of dark energy with the electro-magnetic field and followed a method 

called chameleon screening for their analysis. They inspected the effect 

on the detector, if dark energy is produced in a particular region of the 

sun, called tachocline, where magnetic field is very strong. To their 
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surprise they found the excess recoil electrons are the outcome of dark 

energy. Future experiments will be able to confirm the claim. In this 

sense, the non-minimally coupled scalar-tensor theory of gravity, is 

highly promising. However, one cannot avoid the presence of higher-

order curvature invariant terms in the very early universe. It is therefore 

suggestive to supplement action (74) at least with �²	term to test the 

outcome. This may be posed in the future. 
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1.Introduction 

In a paper M. C. Chaki1 introduced and studied a type of non-flat 

Riemannian manifold called pseudo Ricci symmetric manifold. 
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According to him, a non-flat Riemannian manifold (��,g), (n>2), is 

called pseudo Ricci symmetric manifold if its Ricci tensor S of type (0,2) 

is not identically zero and satisfies the condition 

�������, 
� = 	2�������, 
� + 	�������, 
� + ��
����, ��,				 …(1.1) 

for every vector field X, Y, Z , where A is a non-zero 1-form defined by 

���, �� 	= 	����, � denotes the operator of covariant differentiation with 

respect to the metric tensor g. A is called associated 1-form and � is 

called associated vector field. An n-dimensional manifold of this kind 

was denoted by the symbol  ������ . 

Generalizing the notion of pseudo Ricci symmetric manifold in a paper 

P. Chakrabarti and the present author2  studied a new type of non-flat 

Riemannian manifold called almost generalized pseudo Ricci symmetric 

manifold. A non-flat Riemannian manifold (��,g�, �� > 2�, is called 

almost  generalized pseudo Ricci symmetric manifold if its Ricci tensor 

S of type (0,2) is not identically zero and satisfies the condition 

�������, 
� =

����� + ��������, 
� + 	������
, �� + 	��
����, ��,																…	(1.2) 

for every vector field X, Y, Z , where A, B, C , D are four  non-zero 1-

forms , ∇ denotes the operator of covariant differentiation with respect to 

the metric tensor g. An n-dimensional manifold of this kind was denoted 

by the symbol ��������. Many works [Chaki and Kawaguchi3], [Chaki 

and Koley4 ] etc. have been done on pseudo Ricci symmetric manifolds 

and its different type of generalizations by several authors. 

In a recent paper the present author [Saha5] defined and studied a type of 

non-flat Riemannian manifold called special pseudo Ricci symmetric 

manifold. According to him, a non-flat Riemannian manifold (��,g), 
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(n>2), is called special pseudo Ricci symmetric manifold if its Ricci 

tensor S of type (0,2) is not identically zero and satisfies the condition 

�������, 
� =

	2��������, 
� + 	�������
, �� + 	��
�����, ��,																								… �1.3) 

for every vector field X, Y, Z , where A and ∇ have the meanings already 

mentioned and L is the symmetric endomorphism of the tangent space at 

each point of the manifold corresponding to the Ricci tensor S of type  

(0, 2) and it is defined by  

����, �� 	= 	���, ��, … (1.4) 

for any vector field X, Y. An n-dimensional manifold of this kind was 

denoted by the symbol  ������� .  

Subsequently, the present author6,7 defined and studied two type of 

Riemannian manifolds called almost special pseudo Ricci symmetric 

manifold and generalized special pseudo Ricci symmetric manifold 

which  were defined respectively by the following  equations 

�������, 
� = 	 ����� + 	���������, 
� + 	�������
, ��

+ 	��
�����, ��,																																																											…	�1.5� 

�������, 
� = 	2��������, 
� + 	�������
, ��

+ 	��
�����, ��,																																																										…	�1.6�		

where A, B and C are non-zero 1-forms and S, L and ∇ have the 

meanings already mentioned.  

             The aim of this paper is to define and study a type of non-flat 

Riemannian manifold called almost generalized special pseudo Ricci 

symmetric manifold. A non-flat Riemannian manif%&'	���, ��, �� > 2�, 

is called aimost generalized special pseudo Ricci symmetric manifold if 

its Ricci tensor S of type (0,2) is not identically zero and satisfies the 

condition 
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�������, 
� = 	 ����� + 	���������, 
� + 	�������
, ��

+ 	��
�����, ��,																																																												… �1.7�	

for every vector field X, Y, Z , where A, B, C and D are four non-zero  

1-forms defined by ���, )� 	= 	����,  																													… �1.8�		

		���, +� 	= 	���� …�1.9�	

	���, -� 	= 	����,						 …�1.10�	

	���, /� = 	����,										 …�1.11�	

 L and ∇ have the meanings already mentioned. A, B, C and D are called 

associated 1-forms  of the manifold and ), +, - and / are called 

associated vector fields of the manifolds.. An n-dimensional manifold of 

this kind shall be denoted by the symbol ��������� . If A = B , then 

(1.7) reduces to (1.6) i.e. the manifold becomes generalized special 

pseudo Ricci symmetric manifold, so the name ‘ almost generalized 

special pseudo Ricci symmetric manifold has been chosen. 

 

2. Preliminaries 

In this section we shall obtain some formula which will be used in sequel. 

Let (��, g) be a Riemannian manifold and { 01}, i = 1, 2, ……, n be an 

orthonormal basis of the tangent space at each point and i is summed for 

1 ≤ 3 ≤ �. Let r be the scalar curvature  of the manifold  defined by 

��01 , 01� 	= 	4.																																								  … (2.1) 

Since S is a symmetric ,we have from (1.4) 

	����, �� 	= 	���, ���.										                                                    …(2.2) 

Putting Y = Z = 01 in (1.7) and i is summed for 1 ≤ 3 ≤n we get 

 '4��� 	= 	 ����� 	+ 	�����	|�|6 	+ 	����, -� 	+ 	����, /�,			        …(2.3) 

where |�| is the length of the Ricci tensor defined by |�| √= S(L01, 01). 



ON ALMOST GENERALIZED SPECIAL PSEUDO RICCI  ETC.                103 

 

Again from (1.7) we have  

�������, 
�–	��8����, �� = 	 ����� + 	����– 	���������, 
�–	 

���
� 	+ 	��
�	– 	��
������, ��. …(2.4) 

 

3. Existence of �9:;<=;�> 

In this section we shall give an existence  theorem of the almost 

generalized special pseudo Ricci symmetric manifold. To show the 

existence we shall obtain a necessary and sufficient condition so that a 

�������� can be a ��������� . 

Let us suppose that a   �������� satisfies the condition 

L²X = LX.  …(3.1) 

From  (1.4) and (3.1) we get  

S(LX, Y) = S(X  Y).  …(3.2) 

From (1.2), (2.2) and  (3.2) we get 

�������, 
� 	= 	 ����� 	+ �����	����, 
� 	+ 	�������
, �� 	+

	��
�����, ��,  … (3.3)                 

which shows that the manifold is a  ��������� . Hence we can state the 

following theorem: 

Theorem 3.1:  A  �������� is a  ���������  with the same associated 

1-forms if �6X = LX. 

This gives the existence of ���������. Conversely, if ���������	 

satisfies the condition (3.1), then from (2.2) and (1.7) we get  

�������, 
� = �	���� + 	��������, 
� + 	�������, 
� + ��
����, ��,  

… (3.4) 

which shows that the manifold is a  �������� . Hence we can state the 

following theorem: 
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Theorem 3.2:  A  ��������� is a  ��������  with the same associated 

1-forms if �6X = LX.  

Now Theorem 3.1 and Theorem 3.2 lead us to the following theorem: 

Theorem 3.3:   A  �������� is a  ���������  with the same 

associated 1-forms if and only if both the manifolds satisfy the condition 

�6X = LX. 

Note:  The present author has defined and studied a type of Riemannian 

manifold called Ricci Riemannian manifold8,9 and it is defined as 

follows: 

A non-flat Riemannian manifold (��,g), n>2, is called  Ricci 

Riemannian manifold  if its Ricci tensor S of type (0,2) is not identically 

zero and satisfies the condition 

 S(LX, Y) = 
?

�@A
S(X, Y).  …(3.5) 

An example showing the existance of Ricci Riemannian manifold was 

given by constructing (�B, g)  whose metric8 in  local coordinates  

(CA, C6, CB) is as follows: 

dD6 = 0E
FG	EH�'CA�6 + 2dCAdC6 +  �'CB�6.  …(3.6) 

Here an existance of  ��������� is shown by using the condition (3.5) 

on  �������� as follows:. 

From (1.2) and (3.5) and since in a Ricci Riemannian manifold the scalar 

curvature8 r ≠ 0,  we have   

�������, 
� 	= 	 ��̅��� 	+	�K��������, 
� 	+	�̅������
, �� 	+

	�L�
�����, ��,                         … (3.7) 

where  �̅(X) = g(X, 
�@A

?
)),  �K(X) = g(X, 

�@A

?
+),  �̅(X) = g(X, 

�@A

?
-) and  

�L(X) = (X, 
�@A

?
/), 
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which is a ��������� whose associated vector fields are parallel to the 

associated vector fields  of �������� . This gives the existance of 

���������. Conversely,  let us supose that ���������	 satisfies the 

condition (3.5). 

From (1.7) and (3.5) , we have  

(∇XS)(Y, Z) =[�M(X) +�N(X)] S(Y, Z) + �M(Y)S(X, Z)  

+ �O(Z)S(Y, X),                                   …(3.8) 

where  �M(X) = g(X, 
?

�@A
)), �N(X)  = g(X, 

?

�@A
+), �M(X)  = g(X, 

?

�@A
-) and  

�O(X) = g(X, 
?

�@A
/), 

which is a �������� whose associated vector fields are parallel to the 

the associated vector fields of  ���������. Thus we have the following 

theorem 

Theorem 3.4: A �������� is a  ���������  with  parallel  associated 

vector fields if and only if both the manifolds are Ricci Riemannian. 

 

4.The length of the Ricci tensor and the scalar curvature of 

�9:;<=;�>  

 In this section we shall obtain the length of the Ricci tensor and 

investigate the nature of scalar curvature of ��������� . 

Putting Y = Z = 01 in (2.4) and 3 is summed for 1 ≤ 3 ≤ �, we get 

'4��� 	= 	2����� 	+ 	���� 	− 	�����	|�|6 	− 	2����, )� 		−

	2����, +� 	+ 	2����, /�                              …(4.1) 

From (2.3) and (4.1) we get  

����� 	+ 	���� 	− 	2�����	|�|6 	− 	2����, )� 	− 2	����, +� 	−

	����, -� 	+ 	����, /� 	= 	0.                   …(4.2) 

≠From (4.2) if A(X) + B(X)  2D(X) we can write  
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|�|6 =
2S�LX, )	    � + 2	S�LX, + � + 	S�LX, -	 �	– S�LX,  /�

A�X� 	+ B�X�	– 	2D�X�
																				… �4.3� 

Hence we can state the following theorem: 

Theorem 4.1: In a ��������� the following relation holds 

�����	+ 	���� 	− 	2�����	|�|6 	− 	2����, )� 	− 2	����, +� 	

− 	����, -� 	+ 	����, /� 	= 	0.	

≠and if A(X) + B(X)  2D(X), then the length of the Ricci tensor S is 

given by  

|�|6 =
2S�LX, α� + 2	S�LX, β� + 	S�LX, γ�– S�LX, δ�

A�X� 	+ B�X�– 	2D�X�
 

Note1: If �	 = 	�	 = � = 	�, then from  (4.2) we get S(LX, α) = 0. 

This result was proved by the present author for special pseudo Ricci 

symmetric manifold in his paper5. 

NOTE 2:  If A = C = D, then from  (4.2) we get 

|�|6 =
2S�LX, α� 	+ 2	S�LX, β�

����	– ����
	, ���� 	≠ 	���� 

This result was proved by the present author for almost special pseudo 

Ricci symmetric manifold in his paper6. 

NOTE 3: If A = B, then from  (4.2) we get 

|�|6 =
4S�LX, α� + 	S�LX, γ� − 	S�LX, δ�

2�A�X�– 	D�X��
	 , ���� 	≠ 	����.	

This result was proved by the present author for generalized special 

pseudo Ricci symmetric manifold in his paper7. 

Again we suppose that the scalar curvature is constant i.e. 

'4��� 	= 	0.                       …(4.4) 

From (2.3) and (4.4) we get  

|�|6 = −
����, -� + 	����, /�

���� + 	����
																																																													… �4.5� 
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Again if (4.5) holds in ��������� , then from (2.3) we get  dr(X) = 0 

i.e. the scalar curvature is constant . This leads to the following theorem: 

Theorem 4.2:  The scalar curvature of ��������� is constant if and 

only	if	|�|6 = −
����, -� + 	����, /�

���� + 	����
 

Again if the scalar curvature is constant , we get from (4.1), 

	����� + 	����– 	�����|�|6 	− 	����, )� 	− 	����, +� + 	����, /� = 	0	 

…(4.6) 

From (1.8), (1.9), (1.11) and (4.6) we get  

����, b� 	= 	���, b�	|�|6  …(4.7) 

where  

	b	 = 	)	 + 	+	– 	/ ...(4.8) 

From (1.4) and (4.7) we get  

�6b =  |�|6 ξ,  for all X.  …(4.9) 

Let d be the eigen value of the Ricci tensor L of type (1,1) corresponding 

to the eigen vector b, then from (4.9) we get, 

	d = ±|�|.  …(4.10) 

Hence the Ricci tensor L of type (1,1) has two eigen values, namely, + 

|�|  and - |�| corresponding to the eigenvector b. This leads to the 

following theorem: 

Theorem 4.3: In a ��������� , �� > 2�, with constant scalar curvature,  

the Ricci tensor L of type (1,1) has two eigen values, namely, + |�|  and - 

|� | corresponding to the eigen vector 	)	 + 	+	– 	/ where ), + and / are 

the associated vector fields of the manifold and |�| is the length of the 

Ricci tensor S of type (0, 2).  

Now let us suppose that  +|�| has multiplicity m and -|�| has multiplicity 

m – n, then  
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r = (2m - n) |�|.  …(4.11) 

If the scalar curvature is zero, then from (4.11) we get,  n = 2m i.e. the 

manifold is even dimensional. 

Hence we can state the following theorem: 

Theorem 4.4: A ��������� , �� > 2�, with zero scalar curvature is 

even dimensional. 

Again interchanging Y and Z in (1.7) we get  

	������
, �� 	= 	 ����� 	+ 	�����	���
, �� 	+ 	��
�����, �� 	+

	��������, 
�.             …(4.12) 

∇Since ( X ∇S)(Y, Z) = ( XS)(Z, Y) we get from  (1.7) and (4.12)  

e�
�����, �� 	= 	e�������, 
�,  …(4.13)                

where, 

e��� 	= 	����	– 	����.  …(4.14) 

Let  

E(X) = g(X, f), where f	 = 	-	– 	/.  …(4.15)       

Putting X = Y = 01in (4.13) and i is summed for 1 ≤ 3 ≤ �, we get  

E(Z)|�|6	= S(LZ, f).  …(4.16) 

Putting Z = f in (4.13) and using (4.16) we get  

����, �� 	= 	 |�|6	g���g���,  …(4.17)          

where 

T(X) = g(X, h) , h = 
i

√k�i�
  is a unit vector field.    …(4.18) 

Thus we have the following theorem: 

Theorem 4.5:  In a ��������� , �� > 2�, the Ricci tensor has  the form 

����, �� 	= 	 |�|6	g���g���, where g��� 	= 	���, h� , h = 
l@m

√n�l@m,l@m�
 is 

a unit vector field, - and / are associated vector fields of the manifold 

and |�| is the length of the Ricci tensor S of type (0, 2). 
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5. �9:;<=;�> with cyclic parallel Ricci tensor 

In this section we consider the effect of cyclic parallel Ricci tensor in a 

��������� .  

The Ricci tensor S of type (0, 2) is called cyclic parallel [Gray10] if it 

satisfies the condition  

∇( X ∇S)(Y, Z) + ( Y ∇S)(Z, X) + ( ZS)(X, Y) = 0.  …(5.1) 

From (1.7) and (5.1) we get  

P(X) S(LY, Z) + P(Y)S(LZ, X) + P(Z)S(LX, Y) = 0, …(5.2) 

where 

���� 	= 	���� 	+ 	���� 	+ 	���� 	+ 	����.  …(5.3) 

Now we have the Walker’s lemma  [Walker11]: 

Walker’s Lemma: If o1p , q1 are numbers,  o1p = op1  and o1pqr + oprq1 

+ or1qp = 0,  for i, j, k = 1, 2, 3, …, n, then either all o1p are zero or, all q1 

are zero. In local coordinates the 1-form P can be written as �1 and the 

tensor S in the form S(LX, Y) can be written as  �1s�p
s = �K1p . In local 

coordinates the equation (5.2) can be expressed as 

�K1p�r + �Kpr�1 + �Kr1�p = 0.                                                             …(5.4) 

Hence by Walker’s Lemma we get either �1 = 0 or, �Kpr = 0 

i.e. either  P(X) = 0 or, S(LY, Z) = 0. 

≠Since S(LY, Z)  0, by definition of ��������� , P(X) = 0. Hence from 

(5.3) we get  

A(X) + B(X) + C(X) + D(X) = 0.                                     …(5.5) 

Conversely, we suppose that the relation (5.5) holds in a  ��������� , 

then from (1.7) and (5.5) we get 

(∇XS)(Y, Z) + (∇YS)(Z, X) + (∇ZS)(X, Y) = 0. 
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i.e., the Ricci tensor is cyclic parallel. Hence we can state the following 

theorem: 

Theorem 5.1:  In a ��������� the Ricci tensor S of type (0, 2) is cyclic 

parallel if and only if 

 A(X) + B(X) + C(X) + D(x) = 0.  

 

6. Ricci curvature of �9:;<=;�> 

 In this section we shall find a property of Ricci curvature of ���������. 

If we replace Y and Z by X in (1.7) we get  

(∇XS)(X, X) =0  [A(X) + B(X) + C(X) + D(X)]S(LX, X).  …(6.1) 

Since the Ricci tensor is non-zero,  from (6.1) we get, 

∇XS)(X, X) = 0 if and only if A(X) + B(X) + C(X) + D(x) = 0. 

Thus we have the following theorem: 

Theorem 6.1:  In a ���������  Ricci curvature in the direction of any 

vector field is covariantly constant if and only if A(X) + B(X) + C(X) + 

D(X) = 0. 

Note:  Every Riemannian manifold admitting cyclic parallel Ricci tensor  

has covariantly constant Ricci curvature in any direction of a vector field 

but every manifold having covariantly constant Ricci curvature in any 

direction of a vector field may not admit cyclic parallel Ricci tensor. 

Here from Theorem 5.1 and Theorem 6.1 we find that the condition 

���� 	+ 	���� 	+ 	���� 	+ 	��C� 	= 	0 makes it possible.  

 

 7.  Conformally flat Ricci semi symmetric �9:;<=;�> , (n>3) 

 In this section we shall find the nature of  ��������� if it is  a 

conformally flat Ricci semi symmetric manifold. 
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In a conformally flat Riemannian manifold (Mn,g), n>3, the Riemannian 

curvature tensor of type (1,3) [Eisenhart12] R is given by  

R(X,Y)Z = 
A

�@6
[g(Y,Z)LX – g(X,Z)LY +  S(Y,Z)X – S(X,Z)Y] - 

?

��@A���@6�
[g(Y,Z)X – g(X,Z)Y]. …(7.1) 

Now we suppose that this manifold is a Ricci semi symmetric [Szabo13] 

manifold, then we have 

R(X, Y)·S = 0.  …(7.2) 

From (7.1) and (7.2) we get  

g(Y,Z)S(LX,W)–g(X,Z)S(LY,W)+g(Y,W)S(LX,Z)–g(X,W)S(LY, Z) – 

?

�@A
[g(Y, Z)S(X,W)–g(X,Z)S(Y,W)+g(Y,W)S(X,Z)–g(X,W)S(Y,Z)]= 0.                           

 …(7.3) 

Putting Y = Z = ei  in (7.3) where {ei}, i = 1, 2, 3, ….,n is an orthonormal 

basis of the tangent space at each point, i is summed for	1 ≤ 3 ≤ �, we 

get  

������, W) - 
?

�@A
S(X, W)] – [|�|6 - 

?H

�@A
]g(X, W) = 0.  …(7.4)             

From (4.17) and (7.4) we get 

S(X, W) = a g(X, W) + b T(X)T(W),  …(7.5) 

where a = 
?H	@	��@A�|t|H

�?
,  b = 

��@A�|t|H

?
, if 4 ≠ 0.  

The definition of quasi Einstein manifold14 as follows: 

A non-flat Riemannian manifold (��, g), (n>2) is called quasi Einstein 

manifold if its Ricci tensor S of type (0, 2) is not identically zero and 

satisfies the condition 

	���, �� 	= 	u���, �� 	+ 	vw���w���,  (7.6) 
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where p, q are scalars v ≠ 	0 and H is a non-zero 1-form defined by 

H(X) = g(X, x), x is a unit vector field.  Many works15,16, on this 

manifold and its generalizations have been done by several authors. 

Here we get from (7.5), a and b are scalars, since |�| ≠ ≠0 implies b  0. 

Again from (4.18) we have T(X) = g(X, h), where	h is a unit vector field. 

Thus (7.5) satisfies all the conditions of quasi Einstein manifold. 

Therefore it follows that a conformally flat Ricci semi symmetric 

(AGSPRS)n �� > 3� with non-zero  scalar curvature is a quasi Einstein 

manifold introduced by Chaki and Maity in 2000. Thus we can state the 

following theorem: 

Theorem 7.1:   A conformally flat Ricci semi symmetric  (AGSPRS)n 

�� > 3� with non-zero  scalar curvature is a  quasi Einstein manifold. 

 

8. Conclusion 

After preliminaries an existence theorem of ��������� has been 

proved. It is shown that a  �������� is a  ���������  with the same 

associated 1-forms if and only if both the manifolds satisfy the condition 

�6X = LX. In the next section it is shown that in a ��������� , �� > 2�, 

with constant scalar curvature,  the Ricci tensor L of type (1,1) has two 

eigen values, namely, + |�|  and - |�| corresponding to the eigen vector  

)	 + 	+	– 	/ where ), + and / are the associated vector field of the 

manifold  and |�| is the length of the Ricci tensor S of type (0, 2) and a  

��������� , �� > 2�, with zero scalar curvature is even dimensional. In 

section 3, it is shown that in a ��������� , �� > 2�, the Ricci tensor 

has  the form ����, �� 	= 	 |�|6	g���g���, where g��� 	= 	���, h�	, h	 =

	
y@l

√n�y@l,y@l�
 is a unit vector field, + and - are associated vector field of 
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the manifold. In section 4, it is shown that in a ��������� the Ricci 

tensor S of type (0, 2) is cyclic parallel if and only if ���� 	+ 	���� 	+

	����	+ 	���� 	= 	0 and In section 5 it is shown that in   a ���������   

Ricci curvature in the direction of any vector field is covariantly constant 

if and only if ���� 	+ 	���� 	+ 	���� 	+ 	���� 	= 	0. Every Riemannian 

manifold admitting cyclic parallel Ricci tensor  has covariantly constant 

Ricci curvature in any direction of a vector field but every manifold 

having covariantly constant Ricci curvature in any direction of a vector 

field does not admit cyclic parallel Ricci tensor. Here  we find that the 

condition ���� 	+ 	���� 	+ 	���� 	+ 	���� 	= 	0 makes it possible.     

Finally, it is shown that a conformally flat Ricci semi symmetric  

��������� , �� > 3�, with non-zero  scalar curvature is a  quasi 

Einstein manifold. 
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 [Abstract:  This paper presents a study of many particles short range 

azimuthal correlation of pions emitted in S
32

-AgBr interactions at 200 AGeV by 

dividing the total data set into three sub-sets having different range of 

multiplicities. The experimental results are compared with those of Monte Carlo 

simulated events to look for true dynamical correlation. The data show strong 

many particle correlation among the produced particles for all the multiplicity sub-

sets. No significant dependence of correlation on multiplicity has been observed]. 

 Keywords: Heavy ion interactions, produced particles, three-particle 

azimuthal correlation.  

1. Introduction 

 Studies of nuclear matter under extremes of energy and density 

have become a subject of increasing interest because of the possibility of  
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observing  some exotic phenomena. The study of correlations among the 

produced particles presents significant features of the nuclear interaction 

and is a potential source of information. These correlations can provide 

direct information about the later stage of the reaction when nuclear 

matter is highly excited and diffused1. During a period of more than two 

decades, several studies using well-known two−particle and 

three−particle correlation have been reported in different types of 

interactions at various energies2–25. 

 The particles produced in high energy interactions (like hadron-

hadron, hadron-nucleus) seem to prefer to be emitted in a correlated 

fashion. But it is not possible to say with certainty why they prefer to do 

so.  The existing explanations are not at all conclusive. Some people 

thought that the larger part of the correlation effects observed is 

conditioned by the production of the well-known resonances, hot multi-

nucleon fireballs or formation of the exotic state of nuclear matter, the 

quark-gluon-plasma. Others found the experimental data to favour the 

formation of heavier intermediate states, clusterisation or the so-called 

side splash phenomenon etc. A detailed correlation study is essential to 

look for the exact reason of the correlated emission of the particles 

speculated by different theorists. 

 During recent years only a few works have been reported where 

two and three particle correlations have been studied in heavy ion 

interactions at SPS energies13. We have made an investigation on the 

three particle azimuthal correlations for the produced particles in S
32  -

AgBr interaction at 200 AGeV. The experimental data on three particle 

correlation function for the showers is compared with those obtained by 

Monte-Carlo simulation (assuming an independent emission model) to 
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search for true dynamical effect. Any significant excess of the 

experimental data over Monte Carlo values are termed as dynamical 

surplus. The dynamical surplus may signify the presence of dynamical 

correlation among the particles.   

 We have studied three particle azimuthal correlation among pions 

produced in  S
32  -AgBr interaction at 200 AGeV . Moreover, we have 

investigated the dependence of correlation coefficient on multiplicity by 

dividing the total data set into different sub sets having different range of 

multiplicities. 

 

2.  Experimental details 

 Stacks of Ilford G5 nuclear emulsion plates exposed to 32S beam 

of energy 200 AGeV at CERN are used in this work. The scanning of the 

plates is performed with the help of the  LeitzMetaloplan microscope  

with a 10X objective and 10X ocular lens provided with a semi-

automatic scanning stage. Each plate was scanned by two independent 

observers to increase the scanning efficiency. Each of the selected events 

has been examined under an oil-immersion 100X objective. The 

resolution of the coordinate measurements is 1µm along the X  and Y 

axes and 0.5 µm  along the Z axis. Here the nuclear emulsion serves the 

purpose of target as well as detector. In our detector the uncertainty in 

the azimuthal angle is estimated to be 50. Such a high resolution makes 

the emulsion a suitable detector for this kind of short-range correlation 

study. 

 According to the usual emulsion methodology [18], relativistic 

charged particles with ionization I≤ 1.4I0 (I0 being the minimum 
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ionization) and velocity ≥ 0.7c, are termed as shower tracks. They are 

mostly pions.  

 For our present analysis, we have taken into consideration these 

shower tracks for azimuthal correlation.  We have chosen 350 events of 

32S-AgBr interactions at 200 AGeV. The azimuthal angle (φ) were 

measured for each tracks by taking the coordinates of the interaction 

point (X0 ,Y0 ,Z0), coordinates (X1 ,Y1 ,Z1) at the end of the linear portion 

of each secondary track and coordinate (Xi ,Yi ,Zi) of a point on the 

incident beam. For our present analysis we have used the variable  φ . 

 It is worthwhile to mention that emulsion technique possesses 

very high spatial resolution, which makes them very effective detector 

for studying the three particle correlation phenomena.   

 

3.   Method of Analysis 

 Three particle inclusive correlation functions for phase space 

variable z can be defined16 as  

R(z1, z2, z3 ) =  

)()()(

)()()(2),,(

312111

3121113213

zzz

zzzzzz

ρρρ

ρρρρ +
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represent one, two, and three particle densities respectively.  

 In terms of number of particles, R can be represented as 
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1131132T
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=

                   ...(2) 

where NT is the total number of inelastic events, N2(z1, z2) is the number 

of pairs of particles having one particle between phase space intervals z1 

to z1+dz1 and other particle between the phase space interval z2 to z2+dz2 

and N3(z1, z2, z3) is the number of triplets of particles having one particle 

between the interval z1 to z1+dz1 other particle between z2 to z2+dz2 and 

the third particle between  z3 to z3+dz3 in an event . 

 For the purpose of study of azimuthal correlation among shower 

particles, φ  is chosen as phase space variable (φ  being the azimuthal 

angle of emission of the particles). 

In terms of φ ,  

R (φ 1,φ 2,φ 3) = NT
2 N3(φ 1, φ 2 ,φ 3)/[N1(φ 1 )N1(φ 2)  N1(φ 3)]    -NT N2(φ 1,φ

2)/[N1(φ 1)N1(φ 2)]  

 -NT N2(φ 2, φ 3)/[N1(φ 2)N1(φ 3)]  -NTN2(φ 3,φ 1)/[N1(φ 3)N1(φ 1)] +2                      

...(3) 

4.   Monte Carlo Simulation 

 Correlation between the particles produced in high energy heavy 

ion collisions can be studied by observing azimuthal correlation (φ ) 

among them. Apart from the presence of any true dynamics, correlation 

may arise due to the following reasons: 

(a)   The broad multiplicity distribution of produced particles. 

(b)  The dependence of single particle spectrum 
dz

dσ

σ

1  on the 

multiplicity. 
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(c)    Trivial statistical fluctuations. 

 We have compared the experimental data with the data obtained 

by Monte Carlo Simulation assuming Independent Emission Model 

(IEM), to search for the non-trivial dynamical correlation among the 

produced particles  in S
32 - AgBr interactions.   The simulation is made 

using the following assumptions:  

(a)   The produced particles are emitted statistically independently. 

(b)  The multiplicity distribution of the Monte Carlo events is the same 

as the empirical multiplicity spectrum of the real ensemble. 

 (c) The single particle spectrum 
dz

dσ

σ

1  of the simulated events 

reproduces the empirical multiplicity distribution 
dz

dσ

σ

1  of the real 

ensemble. 

This method has been successfully applied for hadron-nucleus and 

nucleus-nucleus interactions2, 4–6. 

 It may be concluded that if one finds any excess in experimental 

values over the Monte Carlo simulated values, then there may be some 

kinematical reason within the reaction process which may leads towards 

short range dynamical correlation among produced particles.  We will 

denote the experimental normalized correlation function by R and that of 

the Monte Carlo calculated events by RM. The difference between 

experimental and Monte Carlo values   (RD = R-RM) is called as 

dynamical surplus and may be interpreted as a measure of genuine 

dynamical correlation. 
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5.  Experimental Results and Discussions 

 For studying the multiplicity dependence of correlation, we have 

divided the whole data set into three sub-sets as following: 

Set-I : Number of pions< 70 

Set-II : Number of pions are in between (70 – 110) 

Set-III : Number of pions> 110 

Sub-sets have more or less equal number of events. 

Normalised three-particle azimuthal correlation function R has been 

calculated for different values of azimuthal angle (φ ) for all the data sets 

using eqn.(3) . Three particle short range correlation has been 

investigated by plotting the values of correlation function R(φ 1,  φ 2 = φ 1, 

φ 3 = φ 1) i.e. the diagonal elements of the correlation matrix R (φ 1,φ 2,φ 3)  

against φ  variable. 

                            

Fig. 1(a) 
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 Three particle correlation function  R for different values of φ  for 

data set I. The solid curve  represents Monte Carlo simulated values. 

                       

Fig.1(b) 

 Dynamical surplus values RD of three particle correlation for 

different values of φ   for  data set I. 

                      

Fig.2(a) 
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 Three particle correlation function R for different values of φ  for 

data set II.  The solid  curve represents Monte Carlo simulated values. 

 

Fig. 2(b) 

 Dynamical surplus values  RD  of three particle correlation for 

different   values of φ  for data set II. 

 Fig.1(a) presents the plot of R vs. φ  corresponding to three-

particle azimuthal correlation among produced particles for data set I.  

The solid curve in this figure represents the values of correlation function 

due to Monte Carlo simulation and the dots indicate the experimental 

values. The errors shown are statistical in origin. Similar things for data 

set II and III have been shown in Fig. 2(a) and 3(a) respectively.   The 

dynamical surplus correlation R
D

 for different values of  φ  are shown in 

Fig.1(b), 2(b) and 3(b) for data sets I, II and III respectively. For all 
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multiplicity ranges three particle short range correlation exists over the 

entire azimuthal angle space. 

                       

Fig.3(a) 

 Three particle correlation function R for different values of φ  for 

data   set III.  The solid curve represents Monte Carlo simulated values. 

 

                        

Fig. 3(b) 
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 Dynamical surplus values RD of three  particle correlation for 

different values of φ  for data set III. 

 It is observed that the correlation effect is extremely significant at 

azimuthal angle φ  around 1980  for the data set I and prominent 

correlation exists at around  φ  = 1620, 2340  and 3060 . 

 For data set II, it is seen that the correlation is most prominent at 

values of φ  around 1980 and the three particle correlation is prominent 

around φ  = 180, 1620  and 2340 . 

  For data set III, it is observed that the maximum correlation exists 

at a value of φ  around 2340and  prominent correlation exists at around φ  

= 180 , 540  and 1260 . 

6. Conclusion 

  It may be concluded that strong three particle azimuthal 

correlation is indicated by all the three sub-sets of different range of 

multiplicities. No significant dependence of correlation on multiplicity 

has been observed.    
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